Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene for Machado–Joseph disease maps to human chromosome 14q

Abstract

Machado–Joseph disease (MJD) is an autosomal dominant, multisystem neurodegenerative disorder involving predominantly cerebellar, pyramidal, extrapyramidal, motor neuron and oculomotor systems. Although it was first reported in families of Portuguese–Azorean descent, MJD has also been described in non–Azorean families from various countries, being one of the most common hereditary spinocerebellar degenerations. With the use of highly polymorphic microsatellite DNA polymorphisms, we have assigned the gene for MJD to the long arm of chromosome 14 (14q24.3–q32) by genetic linkage to microsatellite loci D14S55 and D14S48 (multipoint lod score Zmax=9.719).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakano, K.K., Dawson, D.M. & Spence, A. Machado disease. A hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology 22, 49–55 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Woods, B.T. & Schaumburg, H.H. Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinicopathological entity. J. neurol. Sci. 17, 149–166 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg, R.N., Nyhan, W.L., Bay, C. & Shore, P. Autosomal dominant striatonigral degeneration. A clinical, pathologic, and biochemical study of a new genetic disorder. Neurology 26, 703–714 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Lima, L. & Coutinho, P. Clinical criteria for diagnosis of Machado–Joseph disease: Report of a non-Azorean Portuguese family. Neurology 30, 319–322 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Healton, E.B., Brust, J.C.M., Kerr, D.L., Resor, S. & Penn, A., Presumably Azorean disease in a presumably non-Portuguese family. Neurology 30, 1084–1089 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Sakai, T., Ohta, M. & Ishino, H. Joseph disease in a non-Portuguese family. Neurology 33, 74–80 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Yuasa, T. et al. Joseph's disease: Clinical and pathological studies in a Japanese family. Ann. Neurol. 19, 152–157 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Kitamura, J., Kubuki, Y., Tsuruta, K., Kurihara, T. & Matsukura, S. A new family with Joseph disease in Japan. Homovanillic acid, magnetic resonance, and sleep apnea studies. Arch. Neurol. 46, 425–428 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Bharucha, N.E., Bharucha, E.P. & Bhabha, S.K. Machado–Joseph–Azorean disease in India. Arch. Neurol. 43, 142–144 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Suite, N.D.A., Sequeiros, J. & McKhann, G.M. Machado–Joseph disease in a Sicilian–American family. J. Neurogenet. 3, 177–182 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Barbeau, A. et al. The natural history of Machado–Joseph disease. An analysis of 138 personally examined cases. Can. J. neurol. Sci. 11, 510–525 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg, R.N. Machado–Joseph disease: An autosomal dominant system degeneration. Mov. Dis. 3, 193–203 (1992).

    Article  Google Scholar 

  13. Romanul, F.C.A., Fowler, H.L., Radvany, J., Feldman, R.G. & Feingold, M. Azorean disease of the nervous system. New Engl. J. Med. 296, 1505–1508 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Yakura, H., Wakisaka, A., Fujimoto, S. & Itakura, K. Hereditary ataxia and HL–A genotypes. New Engl. J. Med. 291, 154–155 (1974).

    CAS  PubMed  Google Scholar 

  15. Jackson, J.F., Currier, R.D., Terasaki, P.I. & Morton, N.E. Spinocerebellar ataxia and HLA linkage. Risk prediction by HLA typing. New Engl. J. Med. 296, 1138–1141 (1977),

    Article  CAS  PubMed  Google Scholar 

  16. Ranum, L.P.W. et al. Localization of the autosomal dominant HLA-linked spinocerebellar ataxia (SCA1) locus, in two kindreds, within an 8-cM subregion of chromosome 6p. Am. J. hum. Genet. 49, 31–41 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zoghbi, H.Y. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. Am. J. hum. Genet. 49, 23–30 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gispert, S. et al. Chromosomal assignment of the second (Cuban) locus for autosomai dominant cerebellar ataxia (SCA2) to human chromosome 12q23–24.1. Nature Genet. 4, 295–299 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Myers, S.M., MacLeod, P.M., Forse, R.A., Forster-Gibson, C.J. & Simpson, N.E. Machado–Joseph disease: linkage analysis between the loci for the disease and 18 protein markers. Cytogenet. Cell Genet. 43, 226–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Takiyama, Y. et al. A large Japanese family with Machado–Joseph disease: clinical and genetic studies. Acta Neurol. Scand. 79, 214–222 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Carson, W.J. et al. The Machado–Joseph disease locus is different from the spinocerebellar ataxia locus (SCA1). Genomics 13, 852–855 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Forse, R.A., MacLeod, P., Holden, J.J.A. & White, B.N. DNA marker studies show that Machado Joseph disease is not an allele of the Huntington disease locus. J. Neurogenet. 5, 155–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, J.L., Kwitek, A.E. & May, P.E. Dinucleotide repeat polymorphism at the D14S34 locus. Nucl. Acids Res. 18, 4638 (1990).

    PubMed  PubMed Central  Google Scholar 

  25. Bowden, D.W. et al. Identification and characterization of 23 RFLP loci by screening random cosmid genomic clones. Am. J. hum. Genet. 44, 671–678 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. NIH/CEPH Collaborative Mapping Group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  27. Jordan, S.A., McWilliam, P., O'Briain, D.S. & Humphries, P. Dinucleotide repeat polymorphism at the D14S42 locus. Nucl. Acids. Res. 19, 1171 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma, V., Smith, L., Allen, L., Magenis, R.E. & Litt, M. Dinucleotide repeat polymorphism at the D14S43 locus. Nucl. Acids Res. 19, 1722 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Z. & Weber, J.L. Continuous linkage map of human chromosome 14 short tandem repeat polymorphisms. Genomics 13, 532–536 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Luty, J.A. & Litt, M. Dinucleotide repeat polymorphism at the D14S45 locus. Nucl. Acids Res. 19, 4308 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirayama, K. et al. in Annual Report of Research Committee for Ataxic Disease (in Japanese) 29–44 (The Ministry of Health and Welfare, Tokyo, 1991).

    Google Scholar 

  33. Risch, N. A note on multiple testing procedures in linkage analysis. Am. J. hum. Genet. 48, 1058–1064 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ott, J. in Analysis of Human Genetic Unkage Revised edn 74–76 (Johns Hopkins University Press, Baltimore, 1991).

    Google Scholar 

  35. Schellenberg, G.D. et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 258, 668–671 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. St George-Hyslop, P.H. et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14. Nature Genet. 2, 330–334 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Van Broeckhaven, C. et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3. Nature Genet. 2, 335–339 (1992).

    Article  Google Scholar 

  38. Mullan, M. et al. A locus for familial early-onset Alzheimer's disease on the long arm of chromosome 14 proximal to the α1-antichymotrypsin gene. Nature Genet. 2, 340–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takiyama, Y., Nishizawa, M., Tanaka, H. et al. The gene for Machado–Joseph disease maps to human chromosome 14q. Nat Genet 4, 300–304 (1993). https://doi.org/10.1038/ng0793-300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing