Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex

Abstract

Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1–Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Beclin 1-interaction proteins from Becn1−/−;Becn1–EGFP/+ mice.
Figure 2: Atg14L positively regulates autophagy, and Beclin 1 and Atg14L synergistically promote double-membrane formation.
Figure 3: Rubicon is a negative regulator of autophagy.
Figure 4: Overexpressing Rubicon causes aberrant expansion of late endosomes/lysosomes.
Figure 5: Overexpressed Rubicon is localized on PI(3)P-enriched structures in a Beclin 1-independent manner.

Similar content being viewed by others

References

  1. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  Google Scholar 

  2. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  Google Scholar 

  4. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  Google Scholar 

  5. Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell 4, 422 (2003).

    Article  CAS  Google Scholar 

  6. Yue, Z. et al. A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35, 921–933 (2002).

    Article  CAS  Google Scholar 

  7. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  Google Scholar 

  8. Pacheco, C. D., Kunkel, R. & Lieberman, A. P. Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum. Mol. Genet. 16, 1495–1503 (2007).

    Article  CAS  Google Scholar 

  9. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335 (2001).

    Article  CAS  Google Scholar 

  10. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    Article  CAS  Google Scholar 

  11. Zeng, X., Overmeyer, J. H. & Maltese, W. A. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. 119, 259–270 (2006).

    Article  CAS  Google Scholar 

  12. Stack, J. H., DeWald, D. B., Takegawa, K. & Emr, S. D. Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129, 321–334 (1995).

    Article  CAS  Google Scholar 

  13. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biol. 8, 688–699 (2006).

    Article  CAS  Google Scholar 

  14. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    CAS  PubMed  Google Scholar 

  15. Takahashi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biol. 9, 1142–1151 (2007).

    Article  CAS  Google Scholar 

  16. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  17. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  Google Scholar 

  18. Kabeya, Y. et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812 (2004).

    Article  CAS  Google Scholar 

  19. Wang, Q. J. et al. Induction of autophagy in axonal dystrophy and degeneration. J. Neurosci. 26, 8057–8068 (2006).

    Article  CAS  Google Scholar 

  20. Yue, Z. Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy 3, 139–141 (2007).

    Article  CAS  Google Scholar 

  21. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  Google Scholar 

  22. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  Google Scholar 

  23. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  Google Scholar 

  24. Yan, Y., Flinn, R. J., Wu, H., Schnur, R. S. & Backer, J. M. hVps15 but not calcium/calmodulin is required for the activity and regulation of hVps34 in mammalian cells. Biochem. J. 417, 747–755 (2009).

    Article  CAS  Google Scholar 

  25. Arsov, I. et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 15, 1385–1395 (2008).

    Article  CAS  Google Scholar 

  26. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitatedegradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  27. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    Article  CAS  Google Scholar 

  28. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  29. Stenmark, H., Aasland, R. & Driscoll, P. C. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett. 513, 77–84 (2002).

    Article  CAS  Google Scholar 

  30. Gong, S., Yang, X. W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 12, 1992–1998 (2002).

    Article  CAS  Google Scholar 

  31. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Article  CAS  Google Scholar 

  32. Gronostajski, R. M. & Pardee, A. B. Protein degradation in 3T3 cells and tumorigenic transformed 3T3 cells. J. Cell Physiol. 119, 127–132 (1984).

    Article  CAS  Google Scholar 

  33. Komatsu, M. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl Acad. Sci. USA 104, 14489–14494 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants RNS055683A (Z.Y.), RR00862 and RR022220 (B.T.C.) and by the Howard Hughes Medical Institute (N.H.). We thank A. Tolkovsky for GFP–LC3 HeLa cells, C. Münz for GFP–LC3 MLE12 cells, T. Johansen for mCherry–EGFP–LC3 plasmid and X. Jiang for EGFP–Atg12 and EGFP–Atg5 constructs. We thank W. Yang for help with cell culture and generation of stable cells, and H. Shio, E. Sphicas and A. North in the Bio-Imaging Resource Center at The Rockefeller University for help with microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. and Q.J.W. conceived the project. Z.Y. coordinated all efforts in the study; Z.Y., Q.J.W., Y.Z., N.H. and B.T.C. planned the project; Y.Z. and Q.J.W. performed most of the assays; X.L. assisted with p40 (phox)-PX–EGFP localization and Vps34 kinase analyses; Y.Y. and J.M.B. developed the Myc–Vps34–Vps15 constructs and Vps34 kinase assay protocol; Z.Y., Q.J.W. and Y.Z. wrote the paper.

Corresponding author

Correspondence to Zhenyu Yue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Wang, Q., Li, X. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat Cell Biol 11, 468–476 (2009). https://doi.org/10.1038/ncb1854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing