Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication

Abstract

Emerging evidence suggests that supernumerary centrosomes drive genome instability and oncogenesis1,2,3. Human T-cell leukaemia virus type I (HTLV-I) is etiologically associated with adult T-cell leukaemia (ATL)4. ATL cells are aneuploid, but the causes of aneuploidy are incompletely understood5,6. Here, we show that centrosome amplification is frequent in HTLV-I-transformed cells and that this phenotype is caused by the viral Tax oncoprotein. We also show that the fraction of Tax protein that localizes to centrosomes interacts with TAX1BP2, a novel centrosomal protein composed almost entirely of coiled-coil domains. Overexpression of TAX1BP2 inhibited centrosome duplication, whereas depletion of TAX1BP2 by RNAi resulted in centrosome hyperamplification. Our findings suggest that the HTLV-I Tax oncoprotein targets TAX1BP2 causing genomic instability and aneuploidy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centrosome amplification in HTLV-I-transformed and Tax-expressing cells.
Figure 2: Interaction between Tax and TAX1BP2.
Figure 3: TAX1BP2 is a centrosomal protein.
Figure 4: TAX1BP2 inhibits centrosome duplication.
Figure 5: Tax induces centrosome overduplication through targeting TAX1BP2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. D'Assoro, A. B., Lingle, W. L. & Salisbury, J. L. Centrosome amplification and the development of cancer. Oncogene 21, 6146–6153 (2002).

    Article  CAS  Google Scholar 

  2. Pihan G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  3. Kramer, A. Centrosome aberrations — hen or egg in cancer initiation and progression? Leukemia 19, 1142–1144 (2005).

    Article  CAS  Google Scholar 

  4. Gallo, R. C. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2, 17 (2005).

    Article  Google Scholar 

  5. Jeang, K.-T., Giam, C.-z., Majone, F. & Aboud, M. Life, death, and Tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J. Biol. Chem. 279, 31991–31994 (2004).

    Article  CAS  Google Scholar 

  6. Matsuoka, M. & Jeang, K.-T. Human T-cell leukemia virus type I at age 25: a progress report. Cancer Res. 65, 4467–4470 (2005).

    Article  CAS  Google Scholar 

  7. Doxsey, S., McCollum, D. & Theurkauf, W. Centrosomes in cellular regulation. Annu. Rev. Cell Dev. Biol. 21, 411–434 (2005).

    Article  CAS  Google Scholar 

  8. Gatza, M. L., Eatt, J. C & Marriott, S. J. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene 22, 5141–5149 (2003).

    Article  CAS  Google Scholar 

  9. Ching, Y.-P. et al. Specific TATAA and bZIP requirements suggest that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex. Retrovirology 1, 18 (2004).

    Article  Google Scholar 

  10. Jin, D.-Y., Spencer, F. & Jeang, K.-T. Human T-cell leukemia virus type I oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  Google Scholar 

  11. Haoudi, A., Daniels, R. C., Wong, E., Kupfer, G. & Semmes, O. J. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response. J. Biol. Chem. 278, 37736–37744 (2003).

    Article  CAS  Google Scholar 

  12. Duensing, S. & Munger, K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 21, 6241–6248 (2002).

    Article  CAS  Google Scholar 

  13. Forgues, M. et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol. Cell. Biol. 23, 5282–5292 (2003).

    Article  CAS  Google Scholar 

  14. Zou, C. et al. Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J. Cell Biol. 171, 437–445 (2005).

    Article  CAS  Google Scholar 

  15. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol. 1, 88–93 (1999).

    Article  CAS  Google Scholar 

  16. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817–2822 (1999).

    Article  CAS  Google Scholar 

  17. Matsumoto, Y., Hayashi, K. & Nishida, E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432 (1999).

    Article  CAS  Google Scholar 

  18. Peloponese, J. M. Jr., Haller, K., Miyazato, A. & Jeang, K. T. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc. Natl Acad. Sci. USA 102, 18974–18979 (2005).

    Article  CAS  Google Scholar 

  19. Chun, A. C. S. et al. Coiled-coil motif as a structural basis for the interaction of HTLV-I Tax with cellular cofactors. AIDS Res. Hum. Retrov. 16, 1689–1694 (2000).

    Article  CAS  Google Scholar 

  20. Jin, D.-Y. et al. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor α. J. Biol. Chem. 272, 25816–25823 (1997).

    Article  CAS  Google Scholar 

  21. Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574 (1998).

    Article  CAS  Google Scholar 

  22. Yang, J. et al. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. 159, 431–440 (2002).

    Article  CAS  Google Scholar 

  23. Yang, J. et al. The ciliary rootlet maintains long-term stability of sensory cilia. Mol. Cell. Biol. 25, 4129–4137 (2005).

    Article  CAS  Google Scholar 

  24. Semmes, O. J. et al. HTLV-I and HTLV-II Tax: differences in induction of micronuclei in cells and transcriptional activation of viral LTRs. Virology 217, 373–379 (1996).

    Article  CAS  Google Scholar 

  25. Gromley, A. et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J. Cell Biol. 161, 535–545 (2003).

    Article  CAS  Google Scholar 

  26. Ou, Y. Y., Mack, G. J., Zhang, M. & Rattner, J. B. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 115, 1825–1835 (2002).

    CAS  PubMed  Google Scholar 

  27. Okuda, M. et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103, 127–140 (2000).

    Article  CAS  Google Scholar 

  28. Bahe, S., Stierhof, Y.-D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27–33 (2005).

    Article  CAS  Google Scholar 

  29. Wong, C. & Stearns, T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nature Cell Biol. 5, 539–544 (2003).

    Article  CAS  Google Scholar 

  30. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer. 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  31. Khodjakov, A. & Rieder, C. L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

    Article  CAS  Google Scholar 

  32. Chin, K.-T. et al. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucl. Acids Res. 33, 1859–1873 (2005).

    Article  CAS  Google Scholar 

  33. Ching, Y. P., Pang, A. S., Lam, W. H., Qi, R. Z. & Wang, J. H. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J. Biol. Chem. 277, 15237–15240 (2003).

    Article  Google Scholar 

  34. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).

    Article  CAS  Google Scholar 

  35. Jin, D. Y. et al. Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J. 19, 729–740 (2000).

    Article  CAS  Google Scholar 

  36. Ching, Y. P. et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J. Biol. Chem. 278, 10824–10830 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.-T. Chin, A.C.S. Chun and Y.T. Siu for critical reading of the manuscript. This work was supported by a grant to D.-Y.J. (HKU 7249/01M) from the Hong Kong Research Grants Council. D.-Y.J. is a Leukemia and Lymphoma Society Scholar and a recipient of a National Institutes of Health GRIP New Foreign Investigator Award (R01 TW06186-01) and National Natural Science Foundation of China Young Investigator Award (30029001). Work in the laboratory of K.-T.J. was supported through intramural funds from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.-Y.J. and K.-T.J. wrote the manuscript. Y.-P.C. and D.-Y.J., assisted by S.-F.C., designed, performed and analysed all experiments. K.-T.J. provided reagents and guidance in project planning. D.-Y.J. was responsible for the conceptualization and execution of the study.

Corresponding author

Correspondence to Dong-Yan Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ching, YP., Chan, SF., Jeang, KT. et al. The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication. Nat Cell Biol 8, 717–724 (2006). https://doi.org/10.1038/ncb1432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing