Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor

Abstract

Epithelial cells have separate apical and basolateral plasma membrane domains with distinct compositions. After delivery to one surface, proteins can be endocytosed and then recycled, degraded or transcytosed to the opposite surface. Proper sorting into the transcytotic pathway is essential for maintaining polarity, as most proteins are endocytosed many times during their lifespan1. The polymeric immunoglobulin receptor (pIgR) transcytoses polymeric IgA (pIgA) from the basolateral to the apical surface of epithelial cells and hepatocytes2,3. However, the molecular machinery that controls polarized sorting of pIgR–pIgA and other receptors is only partially understood. The retromer is a multimeric protein complex, originally described in yeast, which mediates intracellular sorting of Vps10p, a receptor that transports vacuolar enzymes4. The yeast retromer contains two sub-complexes. One includes the Vps5p and Vps17p subunits, which provide mechanical force for vesicle budding5,6. The other is the Vps35p–Vps29p–Vps26p subcomplex, which provides cargo specificity7. The mammalian retromer binds to the mannose 6-phosphate receptor, which sorts lysosomal enzymes from the trans-Golgi network to the lysosomal pathway8,9. Here, we show a function for the mammalian Vps35–Vps29–Vps26 retromer subcomplex in promoting pIgR–pIgA transcytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Vps35–Vps29–Vps26 subcomplex of the retromer associates with pIgR in rat liver endosomes.
Figure 2: Vps35 partially colocalizes with pIgR–pIgA in polarized MDCK cells.
Figure 3: Vps35 depletion specifically affects pIgR transcytosis.
Figure 4: Vps35 overexpression specifically restores transcytosis in cells expressing the pIgRΔ670–707 mutant.
Figure 5: Vps35 does not associate with the pIgR-725t mutant.

Similar content being viewed by others

References

  1. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    Article  CAS  Google Scholar 

  2. Hoekstra, D., Tyteca, D. & van IJzendoorn, S.C. The subapical compartment: a traffic center in membrane polarity development. J. Cell Sci. 117, 2183–2192 (2004).

    Article  CAS  Google Scholar 

  3. Rojas, R. & Apodaca, G. Immunoglobulin transport across polarized epithelial cells. Nature Rev. Mol. Cell Biol. 3, 944–956 (2002).

    Article  CAS  Google Scholar 

  4. Seaman, M.N., McCaffery, J.M. & Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  Google Scholar 

  5. Seaman, M.N. & Williams, H.P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).

    Article  CAS  Google Scholar 

  6. Burda, P., Padilla, S.M., Sarkar, S. & Emr, S.D. Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J. Cell Sci. 115, 3889–3900 (2002).

    Article  CAS  Google Scholar 

  7. Nothwehr, S.F., Ha, S.A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    Article  CAS  Google Scholar 

  8. Seaman, M.N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  Google Scholar 

  9. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R. & Bonifacino, J.S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  Google Scholar 

  10. Vergés, M., Havel, R.J. & Mostov, K.E. A tubular endosomal fraction from rat liver: biochemical evidence of receptor sorting by default. Proc. Natl Acad. Sci. USA 96, 10146–10151 (1999).

    Article  Google Scholar 

  11. Pelham, H.R. Insights from yeast endosomes. Curr. Opin. Cell Biol. 14, 454–462 (2002).

    Article  CAS  Google Scholar 

  12. Worby, C.A. & Dixon, J.E. Sorting out the cellular functions of sorting nexins. Nature Rev. Mol. Cell Biol. 3, 919–931 (2002).

    Article  CAS  Google Scholar 

  13. Reddy, J.V. & Seaman, M.N. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol. Biol. Cell 12, 3242–3256 (2001).

    Article  CAS  Google Scholar 

  14. Nothwehr, S.F., Bruinsma, P. & Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).

    Article  CAS  Google Scholar 

  15. Haft, C.R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    Article  CAS  Google Scholar 

  16. Mostov, K.E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    Article  CAS  Google Scholar 

  17. Haft, C.R., de la Luz Sierra, M., Barr, V.A., Haft, D.H. & Taylor, S.I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol. 18, 7278–7287 (1998).

    Article  CAS  Google Scholar 

  18. Wang, Y., Zhou, Y., Szabo, K., Haft, C.R. & Trejo, J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976 (2002).

    Article  CAS  Google Scholar 

  19. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    Article  CAS  Google Scholar 

  20. Altschuler, Y. et al. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7–12 (1999).

    Article  CAS  Google Scholar 

  21. Song, W., Bomsel, M., Casanova, J., Vaerman, J.P. & Mostov, K. Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc. Natl Acad. Sci. USA 91, 163–166 (1994).

    Article  CAS  Google Scholar 

  22. Luton, F., Cardone, M.H., Zhang, M. & Mostov, K.E. Role of tyrosine phosphorylation in ligand-induced regulation of transcytosis of the polymeric Ig receptor. Mol. Biol. Cell 9, 1787–1802 (1998).

    Article  CAS  Google Scholar 

  23. Breitfeld, P.P., Casanova, J.E., McKinnon, W.C. & Mostov, K.E. Deletions in the cytoplasmic domain of the polymeric immunoglobulin receptor differentially affect endocytotic rate and postendocytotic traffic. J. Biol. Chem. 265, 13750–13757 (1990).

    CAS  PubMed  Google Scholar 

  24. Giffroy, D. et al. In vivo stimulation of polymeric Ig receptor transcytosis by circulating polymeric IgA in rat liver. Int. Immunol. 10, 347–354 (1998).

    Article  CAS  Google Scholar 

  25. Apodaca, G., Katz, L.A. & Mostov, K.E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol. 125, 67–86 (1994).

    Article  CAS  Google Scholar 

  26. Sternberger, M. et al. GeneBlocs are powerful tools to study and delineate signal transduction processes that regulate cell growth and transformation. Antisense Nucleic Acid Drug Dev. 12, 131–143 (2002).

    Article  CAS  Google Scholar 

  27. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y. & Phipps, M.L. Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71, 1842–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Breitfeld, P.P., Casanova, J.E., Harris, J.M., Simister, N.E. & Mostov, K.E. Expression and analysis of the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells using retroviral vectors. Methods Cell Biol. 32, 329–337 (1989).

    Article  CAS  Google Scholar 

  29. Barth, A.I., Pollack, A.L., Altschuler, Y., Mostov, K.E. & Nelson, W.J. NH2-terminal deletion of β-catenin results in stable colocalization of mutant β-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J. Cell Biol. 136, 693–706 (1997).

    Article  CAS  Google Scholar 

  30. Belcher, J.D. et al. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats. Proc. Natl Acad. Sci. USA 84, 6785–6789 (1987).

    Article  CAS  Google Scholar 

  31. Huang, L. et al. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei. Mol. Biochem. Parasitol. 102, 211–223 (1999).

    Article  CAS  Google Scholar 

  32. Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882 (1999).

    Article  CAS  Google Scholar 

  33. Jou, T.S. et al. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell 11, 287–304 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.S. Bonifacino and M.N.J. Seaman for copies of their papers before publication and we thank the following UCSF facilities for providing us infrastructure and/or services to perform our studies: the Molecular Structure Core of the Liver Center (P30 DK 26743), the Biomolecular Resource Center, and the Laboratory for Cell Analysis of the Comprehensive Cancer Center. We also thank the Sandler Family Supporting Foundation for a Technology Award on the Zeiss 510 Multi-Photon microscope used in this study. In addition, we are grateful to the Mostov lab members for their input during the preparation of this manuscript. This investigation was supported by NIH grants to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Mostov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Fig. S1 and Fig. S2 (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergés, M., Luton, F., Gruber, C. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6, 763–769 (2004). https://doi.org/10.1038/ncb1153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing