Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epithelial junctions maintain tissue architecture by directing planar spindle orientation

Abstract

During epithelial cell proliferation, planar alignment of the mitotic spindle coordinates the local process of symmetric cell cleavage with the global maintenance of polarized tissue architecture1,2. Although the disruption of planar spindle alignment is proposed to cause epithelial to mesenchymal transition and cancer3,4,5,6, the in vivo mechanisms regulating mitotic spindle orientation remain elusive. Here we demonstrate that the actomyosin cortex and the junction-localized neoplastic tumour suppressors Scribbled and Discs large 1 have essential roles in planar spindle alignment and thus the control of epithelial integrity in the Drosophila imaginal disc. We show that defective alignment of the mitotic spindle correlates with cell delamination and apoptotic death, and that blocking the death of misaligned cells is sufficient to drive the formation of basally localized tumour-like masses. These findings indicate a key role for junction-mediated spindle alignment in the maintenance of epithelial integrity, and also reveal a previously unknown cell-death-mediated tumour-suppressor function inherent in the polarized architecture of epithelia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planar orientation of the mitotic spindle during wing disc development.
Figure 2: The actomyosin cortex is required for planar spindle orientation.
Figure 3: SCRIB and DLG determine planar orientation of the mitotic spindle.
Figure 4: In the absence of apoptosis, spindle misorientation induces EMT-like effects.

Similar content being viewed by others

References

  1. Morin, X. & Bellaïche, Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev. Cell 21, 102–119 (2011)

    Article  CAS  Google Scholar 

  2. Gillies, T. E. & Cabernard, C. Cell division orientation in animals. Curr. Biol. 21, R599–R609 (2011)

    Article  CAS  Google Scholar 

  3. Noatynska, A., Gotta, M. & Meraldi, P. Mitotic spindle (DIS)orientation and DISease: cause or consequence? J. Cell Biol. 199, 1025–1035 (2012)

    Article  CAS  Google Scholar 

  4. Pease, J. C. & Tirnauer, J. S. Mitotic spindle misorientation in cancer–out of alignment and into the fire. J. Cell Sci. 124, 1007–1016 (2011)

    Article  CAS  Google Scholar 

  5. Vasiliev, J. M., Omelchenko, T., Gelfand, I. M., Feder, H. H. & Bonder, E. M. Rho overexpression leads to mitosis-associated detachment of cells from epithelial sheets: a link to the mechanism of cancer dissemination. Proc. Natl Acad. Sci. USA 101, 12526–12530 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Fleming, E. S., Temchin, M., Wu, Q., Maggio-Price, L. & Tirnauer, J. S. Spindle misorientation in tumors from APCmin/+ mice. Mol. Carcinog. 48, 592–598 (2009)

    Article  CAS  Google Scholar 

  7. Meyer, E. J., Ikmi, A. & Gibson, M. C. Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Curr. Biol. 21, 485–491 (2011)

    Article  CAS  Google Scholar 

  8. Spear, P. C. & Erickson, C. A. Apical movement during interkinetic nuclear migration is a two-step process. Dev. Biol. 370, 33–41 (2012)

    Article  CAS  Google Scholar 

  9. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994)

    Article  CAS  Google Scholar 

  10. Gibson, M. C., Patel, A. B., Nagpal, R. & Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature 442, 1038–1041 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Fleming, E. S. et al. Planar spindle orientation and asymmetric cytokinesis in the mouse small intestine. J. Histochem. Cytochem. 55, 1173–1180 (2007)

    Article  CAS  Google Scholar 

  12. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Ségalen, M. et al. The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev. Cell 19, 740–752 (2010)

    Article  Google Scholar 

  14. Guilgur, L. G., Prudêncio, P., Ferreira, T., Pimenta-Marques, A. R. & Martinho, R. G. Drosophila aPKC is required for mitotic spindle orientation during symmetric division of epithelial cells. Development 139, 503–513 (2012)

    Article  CAS  Google Scholar 

  15. Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nature Cell Biol. 8, 594–600 (2006)

    Article  CAS  Google Scholar 

  16. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biol. 8, 586–593 (2006)

    Article  CAS  Google Scholar 

  17. Bowman, S. K., Neumüller, R. A., Novatchkova, M., Du, Q. & Knoblich, J. A. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731–742 (2006)

    Article  CAS  Google Scholar 

  18. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nature Cell Biol. 11, 365–374 (2009)

    Article  CAS  Google Scholar 

  19. Sandquist, J. C., Kita, A. M. & Bement, W. M. And the dead shall rise: actin and myosin return to the spindle. Dev. Cell 21, 410–419 (2011)

    Article  CAS  Google Scholar 

  20. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nature Rev. Mol. Cell Biol. 11, 276–287 (2010)

    Article  CAS  Google Scholar 

  21. Quintin, S., Gally, C. & Labouesse, M. Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet. 24, 221–230 (2008)

    Article  CAS  Google Scholar 

  22. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001)

    Article  CAS  Google Scholar 

  23. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Royer, C. & Lu, X. Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ. 18, 1470–1477 (2011)

    Article  CAS  Google Scholar 

  26. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)

    Article  CAS  Google Scholar 

  28. Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Humbert, P. O. et al. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27, 6888–6907 (2008)

    Article  CAS  Google Scholar 

  30. Leung, C. T. & Brugge, J. S. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482, 410–413 (2012)

    Article  ADS  CAS  Google Scholar 

  31. Megraw, T. L., Kilaru, S., Turner, F. R. & Kaufman, T. C. The centrosome is a dynamic structure that ejects PCM flares. J. Cell Sci. 115, 4707–4718 (2002)

    Article  CAS  Google Scholar 

  32. Bloor, J. W. & Kiehart, D. P. zipper nonmuscle myosin-II functions downstream of PS2 integrin in Drosophila myogenesis and is necessary for myofibril formation. Dev. Biol. 239, 215–228 (2001)

    Article  CAS  Google Scholar 

  33. Varmark, H. et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735–1745 (2007)

    Article  CAS  Google Scholar 

  34. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007)

    Article  CAS  Google Scholar 

  36. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  37. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007)

    Article  ADS  CAS  Google Scholar 

  38. Ni, J. Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nature Methods 8, 405–407 (2011)

    Article  CAS  Google Scholar 

  39. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997)

    Article  ADS  CAS  Google Scholar 

  40. Gibson, W. T. et al. Control of the mitotic cleavage plane by local epithelial topology. Cell 144, 427–438 (2011)

    Article  CAS  Google Scholar 

  41. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bilder, M. Miura, Y. Yamashita, the Bloomington Stock Center, Vienna Drosophila RNAi Center, TRiP, and FlyTrap project for fly stocks and C. Doe, F. Matsuzaki and the Developmental Studies Hybridoma Bank for antibodies. We thank R. Fehon for suggestions. We thank T. Akiyama, A. Fritz, A. Ikmi and M. Szuperak for comments on the manuscript and L. Liang for technical advice. We also thank M. Gogol for graphical assistance, F. Guo for TEM support and L. Gutchewsky for administrative support. This work was supported by the Stowers Institute for Medical Research and the Burroughs Wellcome Fund for Biomedical Research.

Author information

Authors and Affiliations

Authors

Contributions

Y.-I.N. and M.C.G. conceived the project, designed the experiments and wrote the manuscript. Y.-I.N. and E.J.M. performed the experiments and analysed the data. A.K. and S.A.M. constructed the SPIM system and performed live imaging.

Corresponding author

Correspondence to Matthew C. Gibson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12, Supplementary Table 1, Supplementary Text and a Supplementary Reference. (PDF 19314 kb)

Planar cell division and its consequence in a control wing disc

Time-lapse video monitoring a planar cell division and its consequence in a control wing disc. Cnn-GFP (green) was expressed in the nub-Gal4 domain and His-RFP labeled all nuclei. Scale bar, 5 μm. (related to Supplementary Fig. 10d). (AVI 3005 kb)

Misoriented cell division and its consequence in a rok-RNAi wing disc.

Time-lapse video monitoring a misoriented cell division and its consequence in a rok-RNAi wing disc. Cnn-GFP (green) and rok-RNAi were expressed in the nub-Gal4 domain and His-RFP labeled all nuclei (magenta). Scale bar, 5 μm. (related to Supplementary Fig. 10e) (AVI 3929 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, Yi., Meyer, E., Kroesen, A. et al. Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 500, 359–362 (2013). https://doi.org/10.1038/nature12335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12335

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing