Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clarifying the mechanics of DNA strand exchange in meiotic recombination

Abstract

During meiosis, accurate separation of maternal and paternal chromosomes requires that they first be connected to one another through homologous recombination. Meiotic recombination has many intriguing but poorly understood features that distinguish it from recombination in mitotically dividing cells, and several of these features depend on the meiosis-specific DNA strand exchange protein Dmc1 (disrupted meiotic cDNA1). Many questions about this protein have arisen since its discovery more than a decade ago, but recent genetic and biochemical breakthroughs promise to shed light on the unique behaviours and functions of this central player in the remarkable chromosome dynamics of meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connections formed between homologous chromosomes during meiosis.
Figure 2: DNA events in meiotic recombination.
Figure 3: The DNA strand exchange reaction.
Figure 4: Oligomeric structure of Dmc1 nucleoprotein complexes.

Similar content being viewed by others

References

  1. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Kleckner, N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194 (2006)

    Article  PubMed  Google Scholar 

  3. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Shinohara, A. & Shinohara, M. Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet. Genome Res. 107, 201–207 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Tarsounas, M., Morita, T., Pearlman, R. E. & Moens, P. B. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147, 207–220 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bishop, D. K. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081–1092 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992)

    Article  CAS  PubMed  Google Scholar 

  11. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992)

    Article  CAS  PubMed  Google Scholar 

  12. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224–3234 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Grushcow, J. M. et al. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153, 607–620 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stahl, F. W. et al. Does crossover interference count in Saccharomyces cerevisiae? Genetics 168, 35–48 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D. K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsubouchi, H. & Roeder, G. S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev. Cell 5, 915–925 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Di Giacomo, M. et al. Distinct DNA damage-dependent and independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc. Natl Acad. Sci. USA 102, 737–742 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rockmill, B., Sym, M., Scherthan, H. & Roeder, G. S. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9, 2684–2695 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Young, J. A., Hyppa, R. W. & Smith, G. R. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167, 593–605 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bishop, D. K. et al. High copy number suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway. Genes Cells 4, 425–444 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. & Bishop, D. K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2, 615–629 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sehorn, M. G., Sigurdsson, S., Bussen, W., Unger, V. M. & Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hong, E. L., Shinohara, A. & Bishop, D. K. Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J. Biol. Chem. 276, 41906–41912 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Li, Z., Golub, E. I., Gupta, R. & Radding, C. M. Recombination activities of HsDmc1 protein, the meiotic human homolog of RecA protein. Proc. Natl Acad. Sci. USA 94, 11221–11226 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masson, J. Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552–6560 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nara, T., Hamada, F., Namekawa, S. & Sakaguchi, K. Strand exchange reaction in vitro and DNA-dependent ATPase activity of recombinant LIM15/DMC1 and RAD51 proteins from Coprinus cinereus. Biochem. Biophys. Res. Commun. 285, 92–97 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Passy, S. I. et al. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl Acad. Sci. USA 96, 10684–10688 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta, R. C., Golub, E., Bi, B. & Radding, C. M. The synaptic activity of HsDmc1, a human recombination protein specific to meiosis. Proc. Natl Acad. Sci. USA 98, 8433–8439 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinebuchi, T. et al. Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1. Mol. Cell 14, 363–374 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Sauvageau, S. et al. Fission yeast Rad51 and Dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol. Cell. Biol. 25, 4377–4387 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, M. H. et al. Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 280, 40980–40984 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Bugreev, D. V., Golub, E. I., Stasiak, A. Z., Stasiak, A. & Mazin, A. V. Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J. Biol. Chem. 280, 26886–26895 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Chang, Y. C. et al. Molecular visualization of the yeast Dmc1 protein ring and Dmc1–ssDNA nucleoprotein complex. Biochemistry 44, 6052–6058 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Kinebuchi, T., Kagawa, W., Kurumizaka, H. & Yokoyama, S. Role of the N-terminal domain of the human DMC1 protein in octamer formation and DNA binding. J. Biol. Chem. 280, 28382–28387 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Bugreev, D. V. & Mazin, A. V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl Acad. Sci. USA 101, 9988–9993 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, Y. K. et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl Acad. Sci. USA 101, 10572–10577 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Enomoto, R. et al. Positive role of the mammalian TBPIP/HOP2 protein in DMC1-mediated homologous pairing. J. Biol. Chem. 279, 35263–35272 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. Petukhova, G. V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nature Struct. Mol. Biol. 12, 449–453 (2005)

    Article  CAS  Google Scholar 

  43. Sung, P., Krejci, L., Van Komen, S. & Sehorn, M. G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. Yang, H., Li, Q., Fan, J., Holloman, W. K. & Pavletich, N. P. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA–ssDNA junction. Nature 433, 653–657 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Sharan, S. K. et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131, 131–142 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Siaud, N. et al. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J. 23, 1392–1401 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kojic, M., Kostrub, C. F., Buchman, A. R. & Holloman, W. K. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 10, 683–691 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. Martin, J. S., Winkelmann, N., Petalcorin, M. I., McIlwraith, M. J. & Boulton, S. J. RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol. Cell. Biol. 25, 3127–3139 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dray, E., Siaud, N., Dubois, E. & Doutriaux, M. P. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol. 140, 1059–1069 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinohara, M. et al. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147, 1545–1556 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shinohara, M., Gasior, S. L., Bishop, D. K. & Shinohara, A. Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proc. Natl Acad. Sci. USA 97, 10814–10819 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91–94 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Petukhova, G., Sung, P. & Klein, H. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 14, 2206–2215 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dresser, M. E. et al. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147, 533–544 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Catlett, M. G. & Forsburg, S. L. Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol. Biol. Cell 14, 4707–4720 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wesoly, J. et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol. Cell. Biol. 26, 976–989 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Komen, S., Petukhova, G., Sigurdsson, S., Stratton, S. & Sung, P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563–572 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. Ristic, D., Wyman, C., Paulusma, C. & Kanaar, R. The architecture of the human Rad54–DNA complex provides evidence for protein translocation along DNA. Proc. Natl Acad. Sci. USA 98, 8454–8460 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaskelioff, M., Van Komen, S., Krebs, J. E., Sung, P. & Peterson, C. L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003)

    Article  CAS  PubMed  Google Scholar 

  60. Alexeev, A., Mazin, A. & Kowalczykowski, S. C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51–ssDNA nucleoprotein filament. Nature Struct. Biol. 10, 182–186 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. Solinger, J. A., Kiianitsa, K. & Heyer, W. D. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol. Cell 10, 1175–1188 (2002)

    Article  CAS  PubMed  Google Scholar 

  62. Leu, J. Y., Chua, P. R. & Roeder, G. S. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375–386 (1998)

    Article  CAS  PubMed  Google Scholar 

  63. Gerton, J. L. & DeRisi, J. L. Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc. Natl Acad. Sci. USA 99, 6895–6900 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petukhova, G. V., Romanienko, P. J. & Camerini-Otero, R. D. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927–936 (2003)

    Article  CAS  PubMed  Google Scholar 

  65. Tsubouchi, H. & Roeder, G. S. The Mnd1 protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell. Biol. 22, 3078–3088 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zierhut, C., Berlinger, M., Rupp, C., Shinohara, A. & Klein, F. Mnd1 is required for meiotic interhomolog repair. Curr. Biol. 14, 752–762 (2004)

    Article  CAS  PubMed  Google Scholar 

  67. Henry, J. M. et al. Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol. Cell. Biol. 26, 2913–2923 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Enomoto, R. et al. Stimulation of DNA strand exchange by the human TBPIP/Hop2–Mnd1 complex. J. Biol. Chem. 281, 5575–5581 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004)

    Article  CAS  PubMed  Google Scholar 

  70. Tsubouchi, H. & Roeder, G. S. The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168, 1219–1230 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Akamatsu, Y., Dziadkowiec, D., Ikeguchi, M., Shinagawa, H. & Iwasaki, H. Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc. Natl Acad. Sci. USA 100, 15770–15775 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ellermeier, C., Schmidt, H. & Smith, G. R. Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 168, 1891–1898 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blat, Y., Protacio, R. U., Hunter, N. & Kleckner, N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791–802 (2002)

    Article  CAS  PubMed  Google Scholar 

  75. Smith, A. V. & Roeder, G. S. The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136, 957–967 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999)

    Article  CAS  PubMed  Google Scholar 

  77. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work from the authors' laboratory is supported by a grant from the US National Institutes of Health (to S.K.). M.J.N. is supported in part by a fellowship from the Human Frontiers Science Program. S.K. is a Leukemia and Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Keeney.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neale, M., Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006). https://doi.org/10.1038/nature04885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04885

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing