Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extremely slow Drude relaxation of correlated electrons

Abstract

The electrical conduction of metals is governed by how freely mobile electrons can move throughout the material. This movement is hampered by scattering with other electrons, as well as with impurities or thermal excitations (phonons). Experimentally, the scattering processes of single electrons are not observed, but rather the overall response of all mobile charge carriers within a sample. The ensemble dynamics can be described by the relaxation rates, which express how fast the system approaches equilibrium after an external perturbation1,2,3. Here we measure the frequency-dependent microwave conductivity of the heavy-fermion metal UPd2Al3 (ref. 4), finding that it is accurately described by the prediction for a single relaxation rate (the so-called Drude response5). This is notable, as UPd2Al3 has strong interactions among the electrons4 that might be expected to lead to more complex behaviour. Furthermore, the relaxation rate of just a few gigahertz is extremely low—this is several orders of magnitude below those of conventional metals (which are typically around 10 THz), and at least one order of magnitude lower than previous estimates for comparable metals. These observations are directly related to the high effective mass of the charge carriers in this material and reveal the dynamics of interacting electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Real part σ 1 of the complex conductivity of UPd 2 Al 3 as a function of frequency (45 MHz to 20 GHz) and temperature (2 K to 300 K).
Figure 2: Conductivity spectrum of UPd 2 Al 3 at temperature 2.75 K; both real and imaginary parts ( σ 1 and σ 2 , respectively) are shown.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, Fort Worth, 1976)

    MATH  Google Scholar 

  2. Ziman, J. M. Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972)

    Book  Google Scholar 

  3. Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, Cambridge, 2002)

    Book  Google Scholar 

  4. Geibel, C. et al. Heavy-fermion superconductivity at Tc = 2K in the antiferromagnet UPd2Al3 . Z. Phys. B 84, 1–2 (1991)

    Article  ADS  CAS  Google Scholar 

  5. Drude, P. Zur Ionentheorie der Metalle. Phys. Z. 1, 161–165 (1900)

    MATH  Google Scholar 

  6. Grewe, N. & Steglich, F. in Handbook on the Physics and Chemistry of Rare Earths (eds Gschneidner, K. A. Jr & Eyring, L.) Vol. 14, 343–474 (Elsevier, Amsterdam, 1991)

    Google Scholar 

  7. Varma, C. M. Phenomenological aspects of heavy fermions. Phys. Rev. Lett. 55, 2723–2726 (1985)

    Article  ADS  CAS  Google Scholar 

  8. Millis, A. J. & Lee, P. A. Large-orbital-degeneracy expansion for the lattice Anderson model. Phys. Rev. B 35, 3394–3414 (1987)

    Article  ADS  CAS  Google Scholar 

  9. Webb, B. C., Sievers, A. J. & Mihalisin, T. Observation of an energy- and temperature-dependent carrier mass for mixed-valence CePd3 . Phys. Rev. Lett. 57, 1951–1954 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Degiorgi, L. The electrodynamic response of heavy-electron compounds. Rev. Mod. Phys. 71, 687–734 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Donovan, S., Schwartz, A. & Grüner, G. Observation of an optical pseudogap in UPt3 . Phys. Rev. Lett. 79, 1401–1404 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Dressel, M. et al. Nature of heavy quasiparticles in magnetically ordered heavy fermions UPd2Al3 and UPt3 . Phys. Rev. Lett. 88, 186404 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Pines, D. & Nozières, P. The Theory of Quantum Liquids Vol. I, Normal Fermi Liquids (Benjamin, New York, 1966)

    Google Scholar 

  14. Degiorgi, L. et al. The electrodynamic response of heavy-electron materials with magnetic phase transitions. Z. Phys. B 102, 367–380 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Scheffler, M. & Dressel, M. Broadband microwave spectroscopy in Corbino geometry for temperatures down to 1.7 K. Rev. Sci. Instrum. 76, 074702 (2005)

    Article  ADS  Google Scholar 

  16. Huth, M., Kaldowski, A., Hessert, J., Steinborn, T. & Adrian, H. Preparation and characterization of thin films of the heavy fermion superconductor UPd2Al3 . Solid State Commun. 87, 1133–1136 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Jourdan, M., Huth, M. & Adrian, H. Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3 . Nature 398, 47–49 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Bonn, D. A., Garrett, J. D. & Timusk, T. Far-infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988)

    Article  ADS  CAS  Google Scholar 

  19. Singley, E. J., Basov, D. N., Bauer, E. D. & Maple, M. B. Optical conductivity of the heavy fermion superconductor CeCoIn5 . Phys. Rev. B 65, 161101(R) (2002)

    Article  ADS  Google Scholar 

  20. Brown Holden, A. A., Wardlaw, G. M., Reedyk, M. & Smith, J. L. Emergence of coherent transport in UBe13: an optical investigation in both the normal and superconducting states. Phys. Rev. Lett. 91, 136401 (2003)

    Article  ADS  Google Scholar 

  21. Dordevic, S. V., Basov, D. N., Dilley, N. R., Bauer, E. D. & Maple, M. B. Hybridization gap in heavy-fermion compounds. Phys. Rev. Lett. 86, 684–687 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Beyermann, W. P., Grüner, G., Dalichaouch, Y. & Maple, M. B. Relaxation-time enhancement in the heavy-fermion system CePd3 . Phys. Rev. Lett. 60, 216–219 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Awasthi, A. M., Degiorgi, L., Grüner, G., Dalichaouch, Y. & Maple, M. B. Complete optical spectrum of CeAl3 . Phys. Rev. B 48, 10692–10700 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Tran, P., Donovan, S. & Grüner, G. Charge excitation spectrum in UPt3 . Phys. Rev. B 65, 205102 (2002)

    Article  ADS  Google Scholar 

  25. Burke, P. J., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. High frequency conductivity of the high-mobility two-dimensional electron gas. Appl. Phys. Lett. 76, 745–747 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Scheffler.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffler, M., Dressel, M., Jourdan, M. et al. Extremely slow Drude relaxation of correlated electrons. Nature 438, 1135–1137 (2005). https://doi.org/10.1038/nature04232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04232

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing