Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1

Abstract

In Old World primates, TRIM5-α confers a potent block to human immunodeficiency virus type 1 (HIV-1) infection that acts after virus entry into cells1,2,3,4,5. Cyclophilin A (CypA) binding to viral capsid protects HIV-1 from a similar activity in human cells4,6,7,8. Among New World primates, only owl monkeys exhibit post-entry restriction of HIV-1 (ref. 1). Paradoxically, the barrier to HIV-1 in owl monkey cells is released by capsid mutants or drugs that disrupt capsid interaction with CypA4. Here we show that knockdown of owl monkey CypA by RNA interference (RNAi) correlates with suppression of anti-HIV-1 activity. However, reintroduction of CypA protein to RNAi-treated cells did not restore antiviral activity. A search for additional RNAi targets unearthed TRIMCyp, an RNAi-responsive messenger RNA encoding a TRIM5–CypA fusion protein. TRIMCyp accounts for post-entry restriction of HIV-1 in owl monkeys and blocks HIV-1 infection when transferred to otherwise infectable human or rat cells. It seems that TRIMCyp arose after the divergence of New and Old World primates when a LINE-1 retrotransposon catalysed the insertion of a CypA complementary DNA into the TRIM5 locus. This is the first vertebrate example of a chimaeric gene generated by this mechanism of exon shuffling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A CypA homologue is required for owl monkey restriction of HIV-1.
Figure 2: Owl monkey cells express a TRIM5–CypA fusion protein that blocks HIV-1 infection.
Figure 3: HIV-1 is restricted in human or rat cells transduced with TRIMCyp.
Figure 4: TRIMCyp arose from retrotransposition of CypA cDNA into TRIM5.

Similar content being viewed by others

References

  1. Hofmann, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 73, 10020–10028 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl Acad. Sci. USA 99, 11914–11919 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA 99, 11920–11925 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Med. 9, 1138–1143 (2003)

    Article  CAS  Google Scholar 

  5. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993)

    Article  CAS  Google Scholar 

  7. Braaten, D. & Luban, J. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J. 20, 1300–1309 (2001)

    Article  CAS  Google Scholar 

  8. Franke, E. K., Yuan, H. E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Fehr, T., Kallen, J., Oberer, L., Sanglier, J. J. & Schilling, W. Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92–308110. II. Structure elucidation, stereochemistry and physico-chemical properties. J. Antibiot. (Tokyo) 52, 474–479 (1999)

    Article  CAS  Google Scholar 

  11. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003)

    Article  CAS  Google Scholar 

  12. Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Feng, Q., Moran, J. V., Kazazian, H. H. Jr & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996)

    Article  CAS  Google Scholar 

  14. Zhang, Z., Harrison, P. M., Liu, Y. & Gerstein, M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13, 2541–2558 (2003)

    Article  CAS  Google Scholar 

  15. Xu, L. et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ. Exp. Cell Res. 288, 84–93 (2003)

    Article  CAS  Google Scholar 

  16. Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J. M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol. 72, 3845–3850 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001)

    Article  CAS  Google Scholar 

  18. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995)

    Article  CAS  Google Scholar 

  19. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950)

    Article  ADS  CAS  Google Scholar 

  20. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367 (2000)

    Article  CAS  Google Scholar 

  21. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001)

    Article  CAS  Google Scholar 

  22. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48 (2003)

    Article  CAS  Google Scholar 

  23. Gilbert, W. Why genes in pieces? Nature 271, 501 (1978)

    Article  ADS  CAS  Google Scholar 

  24. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999)

    ADS  CAS  Google Scholar 

  25. Damert, A., Lower, J. & Lower, R. Leptin receptor isoform 219.1: an example of protein evolution by LINE-1-mediated human-specific retrotransposition of a coding SVA element. Mol. Biol. Evol. 21, 647–651 (2004)

    Article  CAS  Google Scholar 

  26. Ejima, Y. & Yang, L. Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Hum. Mol. Genet. 12, 1321–1328 (2003)

    Article  CAS  Google Scholar 

  27. Long, M. & Langley, C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Roy-Engel, A. M. et al. Non-traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 316, 1033–1040 (2002)

    Article  CAS  Google Scholar 

  29. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Asmal, M. et al. Production of ribosome components in effector CD4 + T cells is accelerated by TCR stimulation and coordinated by ERK-MAPK. Immunity 19, 535–548 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bieniasz, S. Goff, M. Nicolelis, E. Phelps, S. Ribeiro, G. Towers and S. Valente for reagents. This work was supported by the NIH (J.L.), the Medical Scientist Training Program (D.M.S.), and AmFAR (L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Luban.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayah, D., Sokolskaja, E., Berthoux, L. et al. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004). https://doi.org/10.1038/nature02777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02777

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing