Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fine-mapping in African-American women confirms the importance of the 10p12 locus to sarcoidosis

Abstract

Sarcoidosis is a chronic granulomatous disease with a wide spectrum of symptoms. Genome-wide association studies in European populations have reported significant associations between sarcoidosis and single-nucleotide polymorphisms (SNPs) located in the intergenic region between the C10ORF67 and OTUD1 genes on chromosome 10p12, and the ANXA11 gene (chromosome 10q22). We carried out fine-mapping at 10p12 and 10q22 to assess associations of genetic variants in these regions with sarcoidosis risk in African-American women, based on 486 sarcoidosis cases and 943 age- and geography-matched controls in a nested case–control study within the Black Women’s Health Study. There were no significant associations with variants of the ANXA11 gene (P=0.17). Haplotypic analyses of the C10ORF67–OTUD1 intergenic region revealed a strong inverse association of the variants rs1398024 and rs11013452 with sarcoidosis (odds ratio=0.52; P=0.01). Both SNPs are located inside an 300 kb low recombination region of chromosome 10p12, suggesting that both SNPs are tagging the same causal variant. Our top SNP (rs11013452) is located inside a smaller linkage disequilibrium block in HapMap YRI, further narrowing the position of the causal SNP to a region of 8 kb on chromosome 10p12. The present findings confirm the potential importance of the 10p12 locus in the etiology of sarcoidosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Iannuzzi MC, Rybicki BA, Teirstein AS . Sarcoidosis. N Engl J Med 2007; 357: 2153–2165.

    Article  CAS  Google Scholar 

  2. Newman LS, Rose CS, Maier LA . Sarcoidosis. N Engl J Med 1997; 336: 1224–1234.

    Article  CAS  Google Scholar 

  3. Rybicki BA, Maliarik MJ, Major M . Epidemiology, demographics, and genetics of sarcoidosis. Semin Respir Infect 1998; 13: 166–173.

    CAS  PubMed  Google Scholar 

  4. Swigris JJ, Olson AL, Huie TJ, Fernandez-Perez ER, Solomon J, Sprunger D et al. Sarcoidosis-related mortality in the United States from 1988 to 2007. Am J Respir Crit Care Med 2011; 183: 1524–1530.

    Article  Google Scholar 

  5. Franke A, Fischer A, Nothnagel M, Becker C, Grabe N, Till A et al. Genome-wide association analysis in sarcoidosis and Crohn’s disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 2008; 135: 1207–1215.

    Article  CAS  Google Scholar 

  6. Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40: 1103–1106.

    Article  CAS  Google Scholar 

  7. Li Y, Pabst S, Kubisch C, Grohe C, Wollnik B . First independent replication study confirms the strong genetic association of ANXA11 with sarcoidosis. Thorax 2010; 65: 939–940.

    Article  Google Scholar 

  8. Mrazek F, Stahelova A, Kriegova E, Fillerova R, Zurkova M, Kolek V et al. Functional variant ANXA11 R230C: true marker of protection and candidate disease modifier in sarcoidosis. Genes Immun 2011; 12: 490–494.

    Article  CAS  Google Scholar 

  9. The International HapMap Project. Nature 2003; 426: 789–796.

  10. Levine JB, Lukawski-Trubish D . Extraintestinal considerations in inflammatory bowel disease. Gastroenterol Clin North Am 1995; 24: 633–646.

    CAS  PubMed  Google Scholar 

  11. Zumla A, James DG . Granulomatous infections: etiology and classification. Clin Infect Dis 1996; 23: 146–158.

    Article  CAS  Google Scholar 

  12. Abraham C, Cho JH . Inflammatory bowel disease. N Engl J Med 2009; 361: 2066–2078.

    Article  CAS  Google Scholar 

  13. Fellermann K, Stahl M, Dahlhoff K, Amthor M, Ludwig D, Stange EF . Crohn’s disease and sarcoidosis: systemic granulomatosis? Eur J Gastroenterol Hepatol 1997; 9: 1121–1124.

    Article  CAS  Google Scholar 

  14. Oakley JR, Lawrence DA, Fiddian RV . Sarcoidosis associated with Crohn’s disease of ileum, mouth and oesophagus. J R Soc Med 1983; 76: 1068–1071.

    Article  CAS  Google Scholar 

  15. Hayes MJ, Longbottom RE, Evans MA, Moss SE . Annexinopathies. Subcell Biochem 2007; 45: 1–28.

    Article  CAS  Google Scholar 

  16. Jorgensen CS, Levantino G, Houen G, Jacobsen S, Halberg P, Ullman S et al. Determination of autoantibodies to annexin XI in systemic autoimmune diseases. Lupus 2000; 9: 515–520.

    Article  CAS  Google Scholar 

  17. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol 2010; 63: 1179–1194.

    Article  Google Scholar 

  18. Bresnitz EA, Strom BL . Epidemiology of sarcoidosis. Epidemiol Rev 1983; 5: 124–156.

    Article  CAS  Google Scholar 

  19. Sutherland I, Mitchell DN, Hart PD . Incidence of intrathoracic sarcoidosis among young adults participating in a trial of tuberculosis vaccines. Br Med J 1965; 5460: 497–503.

    Article  Google Scholar 

  20. Terris M, Chaves AD . An epidemiologic study of sarcoidosis. Am Rev Respir Dis 1966; 94: 50–55.

    CAS  PubMed  Google Scholar 

  21. Henke CE, Henke G, Elveback LR, Beard CM, Ballard DJ, Kurland LT . The epidemiology of sarcoidosis in Rochester, Minnesota: a population-based study of incidence and survival. Am J Epidemiol 1986; 123: 840–845.

    Article  CAS  Google Scholar 

  22. Hillerdal G, Nou E, Osterman K, Schmekel B . Sarcoidosis: epidemiology and prognosis. A 15-year European study. Am Rev Respir Dis 1984; 130: 29–32.

    CAS  PubMed  Google Scholar 

  23. Byg KE, Milman N, Hansen S . Sarcoidosis in Denmark 1980-1994. A registry-based incidence study comprising 5536 patients. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20: 46–52.

    PubMed  Google Scholar 

  24. Cozier YC, Berman JS, Palmer JR, Boggs DA, Serlin DM, Rosenberg L . Sarcoidosisin black women in the United States: data from the Black Women’s Health Study. Chest 2011; 139: 144–150.

    Article  Google Scholar 

  25. Cozier YC, Palmer JR, Rosenberg L . Comparison of methods for collection of DNA samples by mail in the Black Women's Health Study. Ann Epidemiol 2004; 14: 117–122.

    Article  Google Scholar 

  26. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  Google Scholar 

  27. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  29. Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ, Waliszewska A et al. A high-density admixture map for disease gene discovery in african americans. Am J Hum Genet 2004; 74: 1001–1013.

    Article  CAS  Google Scholar 

  30. Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A, Tandon A et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 2005; 37: 1113–1118.

    Article  CAS  Google Scholar 

  31. Ruiz-Narvaez EA, Rosenberg L, Wise LA, Reich D, Palmer JR . Validation of a small set of ancestral informative markers for control of population admixture in African Americans. Am J Epidemiol 2011; 173: 587–592.

    Article  Google Scholar 

  32. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 2002; 53: 79–91.

    Article  Google Scholar 

  33. Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D et al. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered 2003; 55: 179–190.

    Article  Google Scholar 

  34. Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, Clayton DG et al. Control of confounding of genetic associations in stratified populations. Am J Hum Genet 2003; 72: 1492–1504.

    Article  CAS  Google Scholar 

  35. McKeigue PM, Carpenter JR, Parra EJ, Shriver MD . Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann Hum Genet 2000; 64 (Pt 2): 171–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant K01HL088709 from the National Heart, Lung, and Blood Institute and Grant CA058420 from the Division of Cancer Control and Population Science, National Cancer Institute (http://www.cancercontrol.cancer.gov). CJ McKinnon was supported by the Graduate Research Assistant Scholarship Program (GRASP) of the Boston University Graduate School of Arts and Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y C Cozier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cozier, Y., Ruiz-Narvaez, E., McKinnon, C. et al. Fine-mapping in African-American women confirms the importance of the 10p12 locus to sarcoidosis. Genes Immun 13, 573–578 (2012). https://doi.org/10.1038/gene.2012.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.42

Keywords

This article is cited by

Search

Quick links