Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3

Abstract

PHASE separation of liquid mixtures into two liquids with different compositions is a well-known phenomenon. It has been proposed1–9 that another type of liquid–liquid phase separation, driven by fluctuations in density rather than in composition, may occur in some elemental systems. Transitions between low- and high-density amorphous phases have been described for the one-component oxides H2O, SiO2and GeO2 (refs 10–17), and it has been suggested18–21 that a liquid–liquid phase transition might occur in supercooled water. If density-driven phase separation truly does occur in liquid mixtures, it should be possible to observe the coexistence of two liquids with the same composition but different density. Here we report the direct observation of such a situation. We observe two coexisting liquid phases in the supercooled melt of AI2O3–Y2O3 just above the glass transition at ambient pressure, both of which have the same composition. We propose that these two phases must differ solely in density, and that the transition is entropically driven. The occurrence of the phase transition in this system may explain why the crystallization of yttrium aluminium garnet, the host material for Nd3 +ions in YAG lasers, is sluggish22–25.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferraz, A. & March, N. H. Phys. Chem. Liq. 8, 289–298 (1979).

    Article  CAS  Google Scholar 

  2. Brazhkin, V. V., Voloshin, R. N. & Popova, S. V. Zh. eksp. teor. Fiz. 50, 392–395 (1989).

    CAS  Google Scholar 

  3. Brazhkin, V. V., Popova, S. V., Voloshin, R. N. & Umnov, A. G. High. Press. Res. 6, 363–369 (1991).

    Article  ADS  Google Scholar 

  4. Brazhkin, V. V., Voloshin, R. N., Popova, S. V. & Umnov, A. G. Phys. Lett. A154, 413–415 (1991).

    Article  CAS  Google Scholar 

  5. van Thiel, M. & Ree, F. H. Phys. Rev. B48, 3591–3599 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Rapoport, E. J. chem. Phys. 46, 2891–2895 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Rapoport, E. J. chem. Phys. 48, 1433–1437 (1968).

    Article  ADS  CAS  Google Scholar 

  8. Endo, H., Tamura, K. & Yao, M. Can. J. Phys. 65, 266–285 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Tsuji, K. J. non-cryst. Solids 117/118, 27–34 (1990).

    Article  ADS  Google Scholar 

  10. Mishima, O., Calvert, L. D. & Whalley, E. Nature 314, 76–78 (1985)

    Article  ADS  CAS  Google Scholar 

  11. Gibbons, R. V. & Ahrens, T. J. J. geophys. Res. 76, 5489–5498 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Sugiura, H., Kondo, K.-l. & Sawaoka, A. in High-Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 551–561 (Reidel, Dordrecht, 1982).

    Book  Google Scholar 

  13. Grimsditch, M. Phys. Rev. Lett. 52, 2379–2381 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Hemley, R. J., Mao, H. K., Bell, P. M. & Mysen, B. O. Phys. Rev. Lett. 57, 747–750 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Williams, Q. & Jeanloz, R. Science 239, 902–905 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Itie, J. P. et al. Phys. Rev. Lett. 63, 398–401 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Smith, K. H., Chizmeshya, A. V. G. & Wolf, G. H. EOS 74, 630 (1993).

    Article  Google Scholar 

  18. Poole, P. H., Scortino, F., Essmann, U. & Stanley, H. E. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Poole, P. H., Essmann, U., Scortino, F. & Stanley, H. E. Phys. Rev. E48, 4605–4610 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Poole, P. H., Scortino, F., Essmann, U. & Stanley, H. E. Phys. Rev. E48, 3799–3817 (1993).

    ADS  CAS  Google Scholar 

  21. Angell, C. A. J. phys. Chem. 97, 6339–6341 (1993).

    Article  CAS  Google Scholar 

  22. Cockayne, B. & Lent, B. J. cryst. Growth 46, 371–378 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Caslavsky, J. L. & Viechnicki, D. J. J. mater. Sci. 15, 1709–1718 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Gervais, M., Le Floch, S., Rifflet, J. C., Coutures, J. & Coutures, J. P. J. Am. Ceram. Soc. 75, 3166–3168 (1992).

    Article  CAS  Google Scholar 

  25. Nicolas, J., Coutures, J., Coutures, J. P. & Boudot, B. J. Solid St. Chem. 52, 101–113 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Brückner, R. J. non-cryst. Solids 5, 123–175 (1970).

    Article  ADS  Google Scholar 

  27. Angell, C. A. & Kanno, H. Science 193, 1121–1122 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Burton, E. F. & Oliver, W. F. Nature 135, 505–506 (1935).

    Article  ADS  CAS  Google Scholar 

  29. Bellissent-Funel, J. & Feixeira, J. J. chem. Phys. 87, 2231–2235 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Fratello, V. J. & Brandle, C. D. J. cryst. Growth 128, 1006–1010 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Voron'ko, Y. K. et al. Soviet Phys. Dokl. 32, 61–64 (1988).

    ADS  Google Scholar 

  32. Merezio, M., Remeika, J. P. & Jayaraman, A. J. chem. Phys. 45, 1821–1824 (1966).

    Article  ADS  Google Scholar 

  33. Wells, A. F. Structural Inorganic Chemistry (Clarendon, Oxford, 1984).

    Google Scholar 

  34. Douy, A. & Odier, P. Mater. Res. Bull. 24, 1119–1126 (1989).

    Article  CAS  Google Scholar 

  35. Richet, P. et al. J. appl. Phys. 74, 5451–5456 (1993).

    Article  ADS  CAS  Google Scholar 

  36. McMillan, P. F., Poe, B. T., Gillet, P. & Reynard, B. Geochim. cosmochim. Acta (in the press).

  37. Poe, B. T., McMillan, P. F., Coté, B., Massiot, D. & Coutures, J. P. J. Am. Ceram. Soc. (in the press).

  38. Zarzycki, J. Les Verres et I'Etat Vitreux (Masson, Paris, 1982).

    Google Scholar 

  39. Coutures, J. P., Berjoan, R., Benezech, G., & Granier, B. Revue. int. Hautes Temp. Réfractaires 15, 103–114 (1978).

    CAS  Google Scholar 

  40. Badets, M. C., Coté, B., Simon, P. & Coutures, J. P. Ann. Chim. Fr. 15, 455–461 (1990).

    CAS  Google Scholar 

  41. Nordine, P. & Atkins, R. M. Rev. Sci. Instrumen. 53, 1456–1464 (1982).

    Article  ADS  CAS  Google Scholar 

  42. Hurrell, J. P., Porto, S. P. S., Chang, I. F., Mitra, S. S. & Bauman, R. P. Phys. Rev. 173, 851–856 (1968).

    Article  ADS  CAS  Google Scholar 

  43. Hofmeister, A. M. & Campbell, K. R. J. appl. Phys. 72, 638–645 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aasland, S., McMillan, P. Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3. Nature 369, 633–636 (1994). https://doi.org/10.1038/369633a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369633a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing