Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation

Abstract

The receptor-regulated Smad proteins are essential intracellular mediators of signal transduction by the transforming growth factor-β (TGF-β) superfamily of growth factors and are also important as regulators of gene transcription. Here we describe a new role for TGF-β-regulated Smad2 and Smad3 as components of a ubiquitin ligase complex. We show that in the presence of TGF-β signalling, Smad2 interacts through its proline-rich PPXY motif with the tryptophan-rich WW domains of Smurf2, a recently identified E3 ubiquitin ligases. TGF-β also induces the association of Smurf2 with the transcriptional co-repressor SnoN and we show that Smad2 can function to mediate this interaction. This allows Smurf2 HECT domain to target SnoN for ubiquitin-mediated degradation by the proteasome. Thus, stimulation by TGF-β can induce the assembly of a Smad2–Smurf2 ubiquitin ligase complex that functions to target substrates for degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGF-β signalling induces association between Smurf2 and Smad2 or Smad3.
Figure 2: Smad2 is not a major target for Smurf2-dependent degradation.
Figure 3: Smad2 recruits Smurf2 into a complex with SnoN.
Figure 4: Smurf2 regulates levels of SnoN at steady state.
Figure 5: Smad2–Smurf2 complex targets SnoN for ubiquitination and degradation.
Figure 6: The Smad2 PY motif is required to recruit Smurf2 to SnoN.
Figure 7: Determinants on SnoN required for Smad2–Smurf2-dependent turnover and model depicting ubiquitin-mediated degradation of SnoN.

Similar content being viewed by others

References

  1. Attisano, L. & Wrana, J. L. Signal transduction by members of the transforming growth factor-β superfamily. Cyto. Growth Factor Rev. 7, 327–339 (1996).

    Article  CAS  Google Scholar 

  2. Heldin, C.-H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  Google Scholar 

  3. Massagué, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–91 (1998).

    Article  Google Scholar 

  4. Derynck, R., Zhang, Y. & Feng, X.-H. Smads: transcriptional activators of TGF-β responses. Cell 95, 737–740 (1998).

    Article  CAS  Google Scholar 

  5. Massagué, J. & Chen, Y. G. Controlling TGF-β signalling. Genes Dev. 14, 627–644 (2000).

    PubMed  Google Scholar 

  6. Miyazono, K. TGF-β signalling by Smad proteins. Cyto. Growth Factor Rev. 11, 15–22 (2000).

    Article  CAS  Google Scholar 

  7. Wrana, J. L. Regulation of Smad activity. Cell 100, 189–192 (2000).

    Article  CAS  Google Scholar 

  8. Macías-Silva, M. et al. MADR2 is a substrate of the TGF-β receptor and its phosphorylation is required for nuclear accumulation and signalling. Cell 87, 1215–1224 (1996).

    Article  Google Scholar 

  9. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).

    Article  CAS  Google Scholar 

  10. Abdollah, S. et al. TβRI phosphorylation of Smad2 on Ser 465 and 467 is required for Smad2/Smad4 complex formation and signalling. J. Biol. Chem. 272, 27678–27685 (1997).

    Article  CAS  Google Scholar 

  11. Souchelnytskyi, S. et al. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for Transforming Growth Factor-β signalling. J. Biol. Chem. 272, 28107–28115 (1997).

    Article  CAS  Google Scholar 

  12. Attisano, L. & Wrana, J. L. Smads as transcriptional co-modulators. Curr. Opin. Cell Biol. 12, 235–243 (2000).

    Article  CAS  Google Scholar 

  13. Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A Smad transcriptional co-repressor. Cell 97, 29–39 (1999).

    Article  CAS  Google Scholar 

  14. Luo, K. et al. The Ski oncoprotein interacts with the Smad proteins to repress TGF-β signalling. Genes Dev. 13, 2196–2206 (1999).

    Article  CAS  Google Scholar 

  15. Akiyoshi, S. et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signalling through interaction with Smads. J. Biol. Chem. 274, 35269–35277 (1999).

    Article  CAS  Google Scholar 

  16. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-β signalling by the SnoN oncoprotein. Science 286, 771–774 (1999).

    Article  CAS  Google Scholar 

  17. Sun, Y. et al. Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signalling. Mol. Cell 4, 499–509 (1999).

    Article  CAS  Google Scholar 

  18. Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H. F. & Weinberg, R. A. SnoN and Ski proto-oncogene proteins are rapidly degraded in response to transforming growth factor-β signalling. Proc. Natl Acad. Sci.USA 96, 12442–12447 (1999).

    Article  CAS  Google Scholar 

  19. Xu, W. et al. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type β transforming growth factor. Proc. Natl Acad. Sci.USA 97, 5924–5929 (2000).

    Article  CAS  Google Scholar 

  20. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signalling. Cell 89, 1165–1173 (1997).

    Article  CAS  Google Scholar 

  21. Nakao, A. et al. Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    Article  CAS  Google Scholar 

  22. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).

    Article  CAS  Google Scholar 

  23. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Biol. 14, 19–57 (1998).

    Article  CAS  Google Scholar 

  24. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  25. Deshaies, R. J. SCF and cullin/ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  26. Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    Article  CAS  Google Scholar 

  27. Rotin, D. in Current Topics in Microbiology and Immunology (ed. Pawson, A. S.) 115–133 (Springer-Verlag, Berlin, 1997).

    Google Scholar 

  28. Kay, B. K., Williamson, M. P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signalling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    Article  CAS  Google Scholar 

  29. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  Google Scholar 

  30. Lin, X., Liang, M. & Feng, X.-H. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming Growth Factor-β signalling. J. Biol. Chem. 275, 36818–36822 (2000).

    Article  CAS  Google Scholar 

  31. Zhang, Y., Chang, C., Gehling, D. J., Hemmati-Brivanlou, A. & Derynck, R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA 98, 974–979 (2001).

    Article  CAS  Google Scholar 

  32. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets TGF-β receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  Google Scholar 

  33. Nomura, T. et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 13, 412–423 (1999).

    Article  CAS  Google Scholar 

  34. Lo, R. S. & Massagué, J. Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nature Cell Biol. 1, 472–478 (1999).

    Article  CAS  Google Scholar 

  35. Yaron, A. et al. Identification of the receptor component of the IκBα ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  Google Scholar 

  36. Winston, J. T. et al. The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phophorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  Google Scholar 

  37. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    Article  CAS  Google Scholar 

  38. Latres, E., Chiaur, D. S. & Pagano, M. The human F-box protein β-TrCP associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  Google Scholar 

  39. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bohmann for HA-ubiquitin, G. Stark for U4A/Jak1 cells and L. Attisano, C. LeRoy and Y. Wang for helpful discussions. This work was supported by grants to J.L.W. from the Canadian Institutes of Health Research and the National Cancer Institute of Canada with funds from the Terry Fox Run. C.G.C. is a Research Fellow of the National Cancer Institute of Canada with funds from the Terry Fox run, and J.L.W. is a Canadian Institutes of Health Research Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Wrana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonni, S., Wang, HR., Causing, C. et al. TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3, 587–595 (2001). https://doi.org/10.1038/35078562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing