Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pilus retraction powers bacterial twitching motility

Abstract

Twitching and social gliding motility allow many Gram negative bacteria to crawl along surfaces, and are implicated in a wide range of biological functions1. Type IV pili (Tfp) are required for twitching and social gliding, but the mechanism by which these filaments promote motility has remained enigmatic1,2,3,4. Here we use laser tweezers5 to show that Tfp forcefully retract. Neisseria gonorrhoeae cells that produce Tfp actively crawl on a glass surface and form adherent microcolonies. When laser tweezers are used to place and hold cells near a microcolony, retractile forces pull the cells toward the microcolony. In quantitative experiments, the Tfp of immobilized bacteria bind to latex beads and retract, pulling beads from the tweezers at forces that can exceed 80 pN. Episodes of retraction terminate with release or breakage of the Tfp tether. Both motility and retraction mediated by Tfp occur at about 1 µm s-1 and require protein synthesis and function of the PilT protein. Our experiments establish that Tfp filaments retract, generate substantial force and directly mediate cell movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piliated N. gonorrhoeae cells crawl on an inert surface.
Figure 2: Optical tweezers reveal retractile forces between piliated N. gonorrhoeae cells.
Figure 3: Quantitative type IV pili retraction assay.

Similar content being viewed by others

References

  1. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Henrichsen, J. Twitching motility. Annu. Rev. Microbiol. 37, 81–93 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Bradley, D. E. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol. 26, 146– 154 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Wolfgang, M., Park, H. S., Hayes, S. F., van Putten, J. P. M. & Koomey, M. Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 95, 14973– 14978 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheetz, M. P. (ed.) Laser Tweezers in Cell Biology (Academic, New York, 1997).

    Google Scholar 

  6. Swanson, J. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. Infect. Immun. 19, 320– 331 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Bieber, D. et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280 , 2114–2118 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Comolli, J. C. et al. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun. 67, 3625– 3630 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pujol, C., Eugene, E., Marceau, M. & Nassif, X. The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proc. Natl Acad. Sci. USA 96, 4017–4022 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merz, A. J., Enns, C. A. & So, M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol. Microbiol. 32, 1316–1332 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Seifert, H. S., Ajioka, R. S., Marchal, C., Sparling, P. F. & So, M. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336 , 392–395 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida, T., Kim, S. R. & Komano, T. Twelve pil genes are required for biogenesis of the R64 thin pilus. J. Bacteriol. 181, 2038–2043 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradley, D. E. Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem. Biophys. Res. Commun. 47, 142– 149 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Karaolis, D. K., Somara, S., Maneval, D. R. Jr, Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375– 379 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378, 32– 38 (1995).

    ADS  CAS  PubMed  Google Scholar 

  18. Forest, K. T. & Tainer, J. A. Type-4 pilus structure: outside to inside and top to bottom—a minireview. Gene 192, 165–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Whitchurch, C. B., Hobbs, M., Livingston, S. P., Krishnapillai, V. & Mattick, J. S. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 101, 33–44 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Wolfgang, M. et al. pilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29, 321 –330 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Brossay, L., Paradis, G., Fox, R., Koomey, M. & Hebert, J. Identification, localization, and distribution of the PilT protein in Neisseria gonorrhoeae. Infect. Immun. 62, 2302–2308 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA 97, 3067–3072 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novotny, C. P. & Fives-Taylor, P. Retraction of F pili. J. Bacteriol. 117, 1306– 1311 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ginocchio, C. C., Olmsted, S. B., Wells, C. L. & Galan, J. E. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76, 717–724 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Evans, E., Berk, D. & Leung, A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59, 838– 848 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao, J. Y., Ting-Beall, H. P. & Hochmuth, R. M. Static and dynamic lengths of neutrophil microvilli. Proc. Natl Acad. Sci. USA 95, 6797– 6802 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95– 100 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Dupuy, B., Taha, M. K., Pugsley, A. P. & Marchal, C. Neisseria gonorrhoeae prepilin export studied in Escherichia coli. J. Bacteriol. 173, 7589– 7598 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol. 1, 200–206 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the Sheetz and So labs for invaluable technical assistance and stimulating discussions; E. Barklis and L. Kenney for critical comments on the manuscript; and M. Koomey for providing bacterial strains. This work was supported by NIH grants to M.S. and M.P.S. A.J.M. received pre-doctoral support from an NIH NRSA grant and postdoctoral support from the Cancer Research Fund of the Damon Runyan-Walter Winchell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Sheetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merz, A., So, M. & Sheetz, M. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000). https://doi.org/10.1038/35024105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35024105

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing