Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The candidate Wilms' tumour gene is involved in genitourinary development

Abstract

WILMS' tumour is an embryonic kidney tumour thought to arise through aberrant mesenchymal stem cell differentiation1 and to result from loss of function of a 'tumour suppressor' gene(s)2. Both sporadic and syndrome-associated Wilms' tumours are accompanied by an increased frequency of abnormalities of the urinary tract and genitalia3. Deletional analysis of individuals with the WAGR syndrome4–8 (for, Wilms' tumour, aniridia, genitourinary abnormalities and mental retardation) showed that a Wilms' tumour gene lies at chromosomal position 11p13. This led to the isolation of a candidate Wilms' tumour gene9,10, encoding a zinc-finger protein which is likely to be a transcription factor. To gain insight into the role of this candidate gene in normal development and tumorigenesis, we have now performed in situ messenger RNA hybridization on sections of human embryos and Wilms' tumours. The candidate Wilms' tumour gene is expressed specifically in the condensed mesenchyme, renal vesicle and glomerular epithelium of the developing kidney, in the related mesonephric glomeruli and in cells approximating these structures in tumours. The other main sites of expression are the genital ridge, fetal gonad and mesothelium. These data suggest that (1) this candidate is indeed a Wilms' tumour gene, (2) the associated genital abnormalities are pleiotropic effects of mutation in the Wilms' tumour gene itself, in support of recent genetic analysis11, and (3) this gene has a specific role in kidney development and a wider role in mesenchymal–epithelial transitions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennington, J. L. & Beckwith, J. B. in Atlas of Tumor Pathology, Second Series, Fascicle 12 (Armed Forces Institute of Pathology, Washington, DC, 1975).

    Google Scholar 

  2. Cavenee, W., Hastie, N. & Stanbridge, E. (eds) in Recessive Oncogenes and Tumor Suppression (Cold Spring Harbor Laboratory, New York, 1989).

  3. Breslow, N. E. & Beckwith, J. B. J. natn. Cancer Inst. 68, 429–436 (1982).

    CAS  Google Scholar 

  4. Riccardi, V. M., Sujanski, E., Smith, A. C. & Francke, U. Pediatrics 61, 604–610 (1978).

    CAS  PubMed  Google Scholar 

  5. van Heyningen, V. et al. Proc. natn. Acad. Sci. U.S.A. 82, 8592–8596 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Glaser, T. et al. Nature 321, 882–887 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Compton, D. A. et al. Cell 55, 827–836 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Davis, L. M. et al. Science 241, 840–842 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Call, K. M. et al. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gessler, M. et al. Nature 343, 774–778 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. van Heyningen, V. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  12. Saxen, L. Organogenesis of the Kidney (Cambridge University Press, 1987).

    Book  Google Scholar 

  13. Potter, E. L. Normal and Abnormal Development of the Kidney (Year Book Medical Publishers, Inc., Chicago, 1972).

    Google Scholar 

  14. Grundy, P. et al. Nature 336, 374–376 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Huff, V. et al. Nature 336, 377–378 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mannens, M. et al. Hum. Genet. 81, 41–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Koufos, A. et al. Am. J. hum. Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goddard, A. D. et al. Molec. cell. Biol. 8, 2082–2088 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunn, J. M., Phillips, R. A., Becker, A. J. & Gallie, B. L. Science 241, 1797–1800 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lee, W. H. et al. Science 235, 1394–1399 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Drash, A., Sherman, F., Hartmann, W. H. & Blizzard, R. M. J. Pediat. 76, 585–593 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. Byskov, A. G. Physiol. Rev. 66, 71–117 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Burgoyne, P. S. Nature 342, 860–862 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Maniatis, T., Fritsch, E. F. & Sambrook, J. (eds) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

  25. Thompson, A. M. et al. Br. J. Cancer 61, 74–78 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidson, D., Graham, E., Sime, C. & Hill, R. Development 104, 305–316 (1988).

    CAS  PubMed  Google Scholar 

  27. Edwards, Y. H., Lloyd, J. C., McMillan, S. L. & Benham, F. J. Molec. cell. Biol. 5, 2147–2149 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elder, J. K., Green, D. K. & Southern, E. M. Nucleic Acids Res. 14, 417–425 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ekblom, P. Med. Biol. 59, 139–160 (1981).

    CAS  PubMed  Google Scholar 

  30. Fleming, S. thesis, Univ. Glasgow (1988).

  31. Polak, J. M., van Noorden, S. (eds) Immunocytochemistry: Practical Applications in Pathology and Biology (Wright, Bristol, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritchard-Jones, K., Fleming, S., Davidson, D. et al. The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990). https://doi.org/10.1038/346194a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346194a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing