Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Megakaryocytic and erythrocytic lineages share specific transcription factors

Abstract

ERYTHROID-specific genes contain binding sites for NF-E1 (also called GF-1 and Eryf-1 ; refs 1–3 respectively), the principal DNA-binding protein of the erythrocytic lineage. NF-E1 expression seems to be restricted to the erythrocytic lineage4. A closely related (if not identical) protein is found in both a human megakaryocytic cell line and purified human megakaryocytes; it binds to promoter regions of two megakaryocytic-specific genes. The binding sites and partial proteolysis profile of this protein are indistinguishable from those of the erythroid protein; also, NF-E1 messenger RNA is the same size in both the megakaryocytic and erythroid cell lines. Furthermore, point mutations that abolish binding of NF-E1 result in a 70% decrease in the transcriptional activity of a megakaryocytic-specific promoter. We also find that NF-E2, another trans5-acting factor of the erythrocytic lineage, is present in megakaryocytes. Transcriptional effects in both lineages might then be mediated in part by the same specific trans-acting factors. Our data strengthen the idea of a close association between the erythrocytic and the megakaryocytic lineages and could also explain the expression of markers specific to the erythrocytic and megakaryocytic lineages in most erythroblastic and megakary-oblastic permanent cell lines5,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wall, L., DeBoer, E. & Grosveld, F. Genes Dev. 2, 1089–1100 (1988).

    Article  CAS  Google Scholar 

  2. Martin, D. I. K., Tsai, S. & Orkin, S. H. Nature 338, 435–438 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Evans, T., Reitman, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 85, 5976–5980 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Tsai, S. F. et al. Nature 339, 446–451 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Papayannopoulou, T., Nakamoto, B., Kurachi, S., Tweeddale, M. & Messner, H. Blood 72, 1029–1038 (1988).

    CAS  PubMed  Google Scholar 

  6. Papayannopoulou, T. et al. J. clin. Invest. 79, 859–866 (1987).

    Article  CAS  Google Scholar 

  7. Seigneurin, D. et al. Expl Hematol. 15, 822–830 (1987).

    CAS  Google Scholar 

  8. Prandini, M. H., Denarier, E., Frachet, P., Uzan, G. & Marguerie, G. Biochem. biophys. Res. Commun. 156, 595–601 (1988).

    Article  CAS  Google Scholar 

  9. Wenger, R. H., Kieffer, N., Wicki, A. N. & Clementson, K. J. Biochem. biophys. Res. Commun. 156, 389–395 (1988).

    Article  CAS  Google Scholar 

  10. Doi, T., Greenberg, S. M. & Rosenberg, R. D. Molec. cell. Biol. 7, 898–904 (1987).

    Article  CAS  Google Scholar 

  11. Bray, P. F. et al. J. clin. Invest. 80, 1812–1817 (1987).

    Article  CAS  Google Scholar 

  12. Ogura, M. et al. Blood 72, 49–60 (1988).

    CAS  PubMed  Google Scholar 

  13. Martin, P. & Papayannopoulou, T. Science 216, 1233–1235 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Tabilio, A. et al. EMBO J. 3, 453–459 (1984).

    Article  CAS  Google Scholar 

  15. Mignotte, V., Eleouet, J. F., Raich, N. & Romeo, P. H. Proc. natn. Acad. Sci. U.S.A. 86, 6548–6552 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Mignotte, V., Wall, L., DeBoer, E., Grosveld, F. & Romeo, P. H. Nucleic Acids Res. 17, 37–54 (1989).

    Article  CAS  Google Scholar 

  17. Martin, D. I. K., Zon, L. I., Mutter, G. & Orkin, S. H. Nature, 344, 444–447 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Hoffmann, L. M., Fritsch, M. K. & Gorski, J. J. biol. Chem. 256, 2597–2600 (1981).

    Google Scholar 

  19. Berthier, R. et al. Expl Hematol. 15, 750–758 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, PH., Prandini, MH., Joulin, V. et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344, 447–449 (1990). https://doi.org/10.1038/344447a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344447a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing