Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A function for lipoxygenase in programmed organelle degradation

Abstract

Membrane-enclosed organelles, a defining characteristic of eukaryotic cells, are lost during differentiation of specific cell types such as reticulocytes (an intermediate in differentiation of erythrocytes), central fibre cells the eye lens, and keratinocytes1. The degradation of these organelles must be tightly regulated with respect to both the time of activation and the specificity of membrane degradation. The expression of 15-lipoxygenase (15-LOX) peaks in reticulocytes immediately before organelle degradation2. Here we show that 15-LOX integrates into the membranes of various organelles, allowing release of proteins from the organelle lumen and access of proteases to both lumenal and integral membrane proteins. In addition, by sparing the plasma membrane, 15-LOX shows the required specificity for organellar membranes. Thus, the action of 15-LOX provides a mechanism by which the natural degradation process can be explained. This conclusion is supported by our finding that lipoxygenase expression in the eye lens is restricted to the region at which organelle degradation occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 15-LOX binds to and permeabilizes intracellular organelles, but not the plasma membrane in vitro.
Figure 2: On incubation with rER membranes, 15-LOX converts from a soluble monomeric protein into an oligomeric membrane-bound structure.
Figure 3: Membrane proteins are not required for membrane integration of 15-LOX.
Figure 4: Lipoxygenase expression and organelle degradation in the adult mouse lens, indicating marked lipoxygenase expression in the inner cortex of the lens where organelles are degraded.

Similar content being viewed by others

References

  1. Alberts, B. et al. in Molecular Biology of the Cell 1158 (Garland, New York, (1994)).

    Google Scholar 

  2. Schewe, T., Rapoport, S. M. & Kühn, H. Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv. Enzymol. Relat. Areas Mol. Biol. 58, 191–272 ( 1986).

    CAS  PubMed  Google Scholar 

  3. Samuelsson, B., Haeggstrom, J. Z. & Wetterholm, A. Leukotriene biosynthesis. Ann. NY Acad. Sci. 629, 89–99 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kühn, H. & Chan, L. The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Curr. Opin. Lipidol. 8, 111–117 (1997).

    Article  PubMed  Google Scholar 

  5. Schewe, T., Halangk, W., Hiebsch, C. & Rapoport, S. M. Alipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett. 60, 149–152 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Kühn, H., Belkner, J., Wiesner, R. & Brash, A. R. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J. Biol. Chem. 265, 18351–18361 (1990).

    PubMed  Google Scholar 

  7. Brinckmann, R. et al. Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91, 64–74 (1998).

    CAS  PubMed  Google Scholar 

  8. Watson, A. & Doherty, F. J. Calcium promotes membrane association of reticulocyte 15-lipoxygenase. Biochem. J. 298, 377–383 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jain, M. K. & Wagner, R. C. Introduction to Biological Membranes (Wiley, New York, (1980)).

    Google Scholar 

  10. Munro, S. & Pelham, H. R. AC-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Hunt, T. On the translational control of suicide in red cell development. Trends Biochem. Sci. 14, 393–394 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Bassnett, S. & Mataic, D. Chromatin degradation in differentiating fiber cells of the eye lens. J. Cell Biol. 137, 37–49 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arora, J. K., Lysz, T. W. & Zelenka, P. S. Arole for 12(s)-hete in the response of human lens epithelial cells to epidermal growth factor and insulin. Invest. Ophthalmol. Vis. Sci. 37, 1411–1418 (1996).

    CAS  PubMed  Google Scholar 

  14. Ishizaki, Y., Jacobson, M. D. & Raff, M. C. Arole for caspases in lens fiber differentiat ion. J. Cell Biol. 140, 153–158 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gouaux, E. Channel-forming toxins: tales of transformation. Curr. Opin. Struct. Biol. 7, 566–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Palmer, M. et al. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J. 17, 1598–1605 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mayer, A., Siegel, N. R., Schwartz, A. L. & Ciechanover, A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244, 1480–1483 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rapoport, S. M. et al. The lipoxygenase of reticu locytes. Purification, characterization and biological dynamics of the lipoxygenase; its identity with the respiratory inhibitors of the reticulocyte. Eur. J. Biochem. 96, 545–561 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Jackson, R. J. & Hunt, T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Steck, T. L. & Kant, J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 31A, 172–180 (1974).

    Article  Google Scholar 

  23. Walter, P. & Blobel, G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 96, 84–93 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Bordier, C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607 (1981).

    CAS  PubMed  Google Scholar 

  25. New, R. R. C. Liposomes: A Practical Approach 37–39 (Oxford Univ. Press, New York, (1990)).

    Google Scholar 

  26. Paul, A., Engelhardt, H., Jakubowski, U. & B aumeister, W. Two-dimensional crystallization of a bacterial surface protein on lipid vesicles under controlled conditions. Biophys. J. 61, 172–188 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Smith and J. Olesker for assistance in writing the manuscript; T. Söllner, J. E. Rothman, P. Szabo, G. van Meer, D. Nikolov, A. Koff, G. Bacher, and members of the Wiedmann, Duvoisin and Rothman laboratories for discussions and comments; N. Min and L. Cohen-Gould for performing the initial immunohistochemistry and electron microscopy experiments. We thank P. Marks and R. Rifkind for suggesting the eye lens experiments. This work was supported by the Memorial Sloan-Kettering Cancer Center, a Fellowship by the Deutsche Forschungsgemeinschaft (to K.v.L.), and by the Samuel and May Rudin Foundation and a Tolly Vinik Pilot Grant Award (to R.M.D.).

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Leyen, K., Duvoisin, R., Engelhardt, H. et al. A function for lipoxygenase in programmed organelle degradation. Nature 395, 392–395 (1998). https://doi.org/10.1038/26500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing