Skip to main content
Articles

An Event-Related fMRI Study of Visual and Auditory Oddball Tasks

Published Online:https://doi.org/10.1027//0269-8803.15.4.221

Abstract Whole brain event-related functional magnetic resonance imaging (fMRI) techniques were employed to elucidate the cerebral sites involved in processing rare target and novel visual stimuli during an oddball discrimination task. The analyses of the hemodynamic response to the visual target stimuli revealed a distributed network of neural sources in anterior and posterior cingulate, inferior and middle frontal gyrus, bilateral parietal lobules, anterior superior temporal gyrus, amygdala, and thalamus. The analyses of the hemodynamic response for the visual novel stimuli revealed an extensive network of neural activations in occipital lobes and posterior temporal lobes, bilateral parietal lobules, and lateral frontal cortex. The hemodynamic response associated with processing target and novel stimuli in the visual modality were also compared with data from an analogous study in the auditory modality (Kiehl et al., 2001). Similar patterns of activation were observed for target and novel stimuli in both modalities, but there were some significant differences. The results support the hypothesis that target detection and novelty processing are associated with neural activation in widespread neural areas, suggesting that the brain seems to adopt a strategy of activating many potentially useful brain regions despite the low probability that these brain regions are necessary for task performance.

References

  • Alexander, J.E. , Porjesz, B. , Bauer, L.O. , Kuperman, S. , Morzorati, S. , O'Connor, S.J. , Rohrbaugh, J. , Begleiter, H. , Polich, J. (1995). P300 hemipheric amplitude asymmetries from a visual oddball task. Psychophysiology, 32, 467– 475 . First citation in articleCrossrefGoogle Scholar

  • Baudena, P. , Halgren, E. , Heit, G. , Clarke, J.M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94, 4 251– 264 . First citation in articleCrossrefGoogle Scholar

  • Boynton, G. , Engel, S. , Glover, G. , Heeger, B. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16, 4207– 4221 . First citation in articleGoogle Scholar

  • Buckner, R.L. (1998). Event-related fMRI and the hemodynamic response. Human Brain Mapping, 6, 373– 377 . First citation in articleCrossrefGoogle Scholar

  • Clark, V.P. , Fannon, S. , Lai, S. , Benson, R. , Bauer, L. (2000). Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology, 83, 3133– 3139 . First citation in articleCrossrefGoogle Scholar

  • Desjardins, A.E. , Kiehl, K.A. , Liddle, P.F. (2001). Removal of confounding effects of global signal in functional magnetic resonance imaging analyses. Neuroimage, 13, 751– 758 . First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating?. Behavioral and Brain Sciences, 11, 357– 374 . First citation in articleCrossrefGoogle Scholar

  • Engel, S. , Zhang, X. , Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging [see comments]. Nature, 388, 6637 68– 71 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Ashburner, J. , Frith, C.D. , Poline, J.-B. , Heather, J.D. , Frackowiak, R.S.J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 2, 165– 189 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Fletcher, P. , Josephs, O. , Holmes, A. , Rugg, M.D. , Turner, R. (1998a). Event-related fMRI: characterizing differential responses. Neuroimage, 7, 1 30– 40 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Jezzard, P. , Turner, R. (1994). Analysis of functional MRI time series. Human Brain Mapping, 1, 153– 171 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Josephs, O. , Rees, G. , Turner, R. (1998b). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 1 41– 52 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Williams, S. , Howard, R. , Frackowiak, R.S. , Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346– 355 . First citation in articleCrossrefGoogle Scholar

  • Friston, K.J. , Zarahn, E. , Josephs, O. , Henson, R.N.A. , Dale, A.M. (1999). Stochastic designs in event-related fMRI. Neuroimage, 10, 5 607– 619 . First citation in articleCrossrefGoogle Scholar

  • Gonzalez, C.M.G. , Clark, V.P. , Fan, S. , Luck, S.J. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 1 41– 51 . First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Baudena, P. , Clarke, J.M. , Heit, G. , Liégeois, C. , Chauvel, P. , Musolino, A. (1995a). Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191– 220 . First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Baudena, P. , Clarke, J.M. , Heit, G. , Marinkovic, K. , Devaux, B. , Vignal, J.P. , Biraben, A. (1995b). Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalography and Clinical Neurophysiology, 94, 229– 250 . First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Marinkovic, K. (1996). General principles for the physiology of cognition as suggested by intracranial ERPs. In C. Ogura & Y. Koga & M. Shimokochi (Eds.), Recent advances in event-related brain potential research (pp. 1072-1084). Amsterdam, New York: Elsevier . First citation in articleGoogle Scholar

  • Halgren, E. , Marinkovic, K. , Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography & Clinical Neurophysiology, 106, 156– 164 . First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Wilson, C.L. , Stapleton, J.M. (1985). Human medial temporal-lobe stimulation disrupts both formation and retrieval of recent memories. Brain & Cognition, 4, 287– 295 . First citation in articleCrossrefGoogle Scholar

  • Heinze, H.J. , Mangun, G.R. , Burchert, W. , Hinrichs, H. , Scholz, M. , Munte, T.F. , Gos, A. , Scherg, M. , Johannes, S. , Hundeshagen, H. et al. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 6506 543– 546 . First citation in articleCrossrefGoogle Scholar

  • Johnson, R. (1988). Scalp-recorded P300 activity in patients following unilateral temporal lobectomy. Brain, 111, 1517– 1529 . First citation in articleCrossrefGoogle Scholar

  • Johnson, R. (1989). Auditory and visual P300s in temporal lobectomy patients: Evidence for modality-dependent generators. Psychophysiology, 26, 633– 650 . First citation in articleCrossrefGoogle Scholar

  • Johnson, R. , Fedio, P. (1987). Task-related changes in P300 scalp distribution in temporal lobectomy patients. Electroencephalography and Clinical Neurophysiology. Supplement, 40, 699– 704 . First citation in articleGoogle Scholar

  • Josephs, O. , Turner, R. , Friston, K. (1997). Event-related fMRI. Human Brain Mapping, 5, 243– 248 . First citation in articleCrossrefGoogle Scholar

  • Katayama, J. i. , Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 1 23– 33 . First citation in articleCrossrefGoogle Scholar

  • Kiehl, K.A. , Hare, R.D. , McDonald, J.J. , Liddle, P.F. (1999). Reduced P3 responses in criminal psychopaths during a visual oddball task. Biological Psychiatry, 45, 1498– 1507 . First citation in articleCrossrefGoogle Scholar

  • Kiehl, K.A. , Laurens, K.R. , Duty, T.L. , Forster, B.B. , Liddle, P.F. (2001). Neural sources involved in auditory target detection and novelty processing: An event-related fMRI study. Psychophysiology, 38, 133– 142 . First citation in articleCrossrefGoogle Scholar

  • Kirino, E. , Belger, A. , Goldman-Rakic, P. , McCarthy, G. (2000). Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: An event-related functional magnetic resonance imaging study. Journal of Neuroscience, 20, 6612– 6618 . First citation in articleGoogle Scholar

  • Knight, R. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383, 6597 256– 259 . First citation in articleCrossrefGoogle Scholar

  • Knight, R.T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography & Clinical Neurophysiology, 59, 1 9– 20 . First citation in articleCrossrefGoogle Scholar

  • Knight, R.T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9, 1 75– 91 . First citation in articleCrossrefGoogle Scholar

  • Knight, R.T. , Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15, 1 3– 13 . First citation in articleCrossrefGoogle Scholar

  • Liddle, P.F. , Kiehl, K.A. , Smith, A.M. (2001). An event-related fMRI study of response inhibition. Human Brain Mapping, 12, 100– 109 . First citation in articleCrossrefGoogle Scholar

  • McCarthy, G. , Luby, M. , Gore, J. , Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. Journal of Neurophysiology, 77, 1630– 1634 . First citation in articleCrossrefGoogle Scholar

  • Menon, V. , Ford, J.M. , Lim, K.O. , Glover, G.H. , Pfefferbaum, A. (1997). Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport, 8, 3029– 3037 . First citation in articleCrossrefGoogle Scholar

  • Mesulam, M.M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597– 613 . First citation in articleCrossrefGoogle Scholar

  • Mesulam, M.M. (1994). Neurocognitive networks and selectively distributed processing. Revue Neurologique, 150, 564– 569 . First citation in articleGoogle Scholar

  • Onofrj, M. , Fulgente, T. , Nobilio, D. , Malatesta, G. (1992). P3 recordings in patients with bilateral temporal lobe lesions. Neurology, 42, . First citation in articleCrossrefGoogle Scholar

  • Price, C.J. , Mummery, C.J. , Moore, C.J. , Frakowiak, R.S. , Friston, K.J. (1999). Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. Journal of Cognitive Neuroscience, 11, 371– 382 . First citation in articleCrossrefGoogle Scholar

  • Rosen, B.R. , Buckner, R.L. , Dale, A.M. (1998). Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Sciences of the United States of America, 95, 773– 780 . First citation in articleCrossrefGoogle Scholar

  • Rugg, M.D. , Pickles, C.D. , Potter, D.D. , Roberts, R.C. (1991). Normal P300 following extensive damage to the left medial temporal lobe. Journal of Neurology, Neurosurgery & Psychiatry, 54, 3 217– 222 . First citation in articleCrossrefGoogle Scholar

  • Worsley, K.J. (1994). Local maxima and the expected Euler characteristic of excursion sets of χ2, F and t fields. Advances in Applied Probability, 26, 13– 42 . First citation in articleCrossrefGoogle Scholar

  • Worsley, K.J. , Friston, K.J. (1995). Analysis of fMRI time-series revisited - again. Neuroimage, 2, 173– 181 . First citation in articleCrossrefGoogle Scholar