Skip to main content
Articles

Event-Related Brain Potentials and Central Executive Function: Further Evidence for Baddeley's Model

Published Online:https://doi.org/10.1027//0269-8803.15.1.1

Baddeley's influential model of working memory postulates a unitary central executive that allocates mental resources to several distinct short-term buffers. Subjects viewed individually presented single numerals and were required to maintain memory sets comprised of the most recently represented three stimuli. A clearly discernible visual event-related potentials (ERP) component emerged once the lengths of series of individual numbers exceeded memory set size and revision of working memory contents was required. An ERP correlate of working memory revision also emerged upon updating of auditory stimuli. This component was absent when subjects were exposed to the same series of stimuli in a standard “oddball” target detection situation. ERPs elicited when subjects were given the opportunity to rehearse without the need to update working memory contents clearly differed in latency from ERPs seen during updating. These findings provide support for previous studies suggesting a specific ERP correlate of central executive processes in working memory and are consistent with Baddeley's model.

References

  • Adam, N. , Collins, G.I. (1978). Late components of the visual evoked potential in short-term memory.. Electroencephalography and Clinical Neurophysiology, 44, 147– 158 . First citation in articleCrossrefGoogle Scholar

  • Baddeley, A.D. (1986). Working memory. . Oxford: Oxford University Press. . First citation in articleGoogle Scholar

  • Baddeley, A.D. (1992). Working memory: The interface between memory and cognition.. Journal of Cognitive Neuroscience, 4, 281– 288 . First citation in articleCrossrefGoogle Scholar

  • Baddeley, A.D. , Hitch, G.J. (1974). Working memory.. In G.H. Bower (Ed.), The psychology of learning and motivation. New York: Academic Press. . First citation in articleCrossrefGoogle Scholar

  • Baddeley, A.D. , Lewis, V. , Vallar, G. (1984). Exploring the articulatory loop.. Quarterly Journal of Experimental Psychology, 36A, 233– 252 . First citation in articleCrossrefGoogle Scholar

  • Barch, D. M , Braver T.S., Nystrom L.E. , Forman, S.D. , Noll, D.C. , Cohen, J.D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex.. Neuropsychologia, 35, 1373– 1380 . First citation in articleCrossrefGoogle Scholar

  • Begleiter, H. , Porjesz, B. , Wang, W. (1993). A neurophysiologic correlate of visual short-term memory in humans.. Electroencephalography and Clinical Neurophysiology, 87, 46– 53 . First citation in articleCrossrefGoogle Scholar

  • Carter, C.S. , Perlstein, W. , Ganguki, R. , Brar, J. , Mintun, M. , Cohen, J.D. (1998). Functional hypofrontality and working memory dysfunction in schizophrenia.. American Journal of Psychiatry, 155, 1285– 1287 . First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Frith, C.D. , Frackowiak, R.S.J. , Grasby, P.M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory.. Neuropsychologia, 34, 1085– 1095 . First citation in articleCrossrefGoogle Scholar

  • D'Esposito, M. , Detre, J.A. , Aslop, D.C. , Shin, R.K. , Atlas, S. , Grossman, M. (1995). The neural basis of the central executive system in working memory.. Nature, 378, 279– 281 . First citation in articleCrossrefGoogle Scholar

  • Donchin, E. (1981). Surprise! ... surprise?. Psychophysiology, 18, 493– 513 . First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M.H.G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and Brain Sciences, 11, 357– 374 . First citation in articleCrossrefGoogle Scholar

  • Fabiani, M. , Karis, D. , Donchin, E. (1990). Effects of mnemonic strategy manipulation in a von Restorff paradigm.. Electroencephalography and Clinical Neurophysiology, 75, 22– 35 . First citation in articleCrossrefGoogle Scholar

  • Fitzgerald, P.G. , Picton, T.W. (1981). Temporal and sequential probability in evoked potential studies.. Canadian Journal of Psychology, 35, 188– 200 . First citation in articleCrossrefGoogle Scholar

  • Frick, R.W. (1988). Issues of representation and limited capacity in the visuospatial sketchpad.. British Journal of Psychology, 79, 289– 308 . First citation in articleCrossrefGoogle Scholar

  • Gevins, A. , Smith, M.E. , Le, J. , Leong, H. , Bennett, J. , Martin, N. , McEvoy, L. , Du, R. , Whitfield, S. (1996). High resolution evoked potential mapping of the cortical dynamics of human working memory.. Electroencephalography and Clinical Neurophysiology, 98, 327– 348 . First citation in articleCrossrefGoogle Scholar

  • Gold, J.M. , Berman, K.F. , Randolph, C. , Goldberg, T.E. , Weinberger, D. (1996). PET validation of a novel prefrontal task: Delayed response alternation.. Neuropsychology, 10(1), 3– 10 . First citation in articleCrossrefGoogle Scholar

  • Jonides, J. , Schumacher, E.H. , Smith, E.E. , Lauber, E.J. , Awh, E. , Minoshima, S. , Koeppe, R.A. (1997). Verbal working memory load affects cerebral activation as measured by PET.. Journal of Cognitive Neuroscience, 9, 462– 475 . First citation in articleCrossrefGoogle Scholar

  • Kiss, I. , Pisio, C. , Francois, A. , Schopflocher, D. (1998). Central executive function in working memory: Event-related brain potential studies.. Cognitive Brain Research, 6, 235– 247 . First citation in articleCrossrefGoogle Scholar

  • Kotchoubey, B.I. , Jordan, J.S. , Brozinger, B. , Westpah, K.P. , Kornhuber, H.H. (1996). Event-related brain potentials in a varied-set memory search task: A reconsideration.. Psychophysiology, 33, 530– 540 . First citation in articleCrossrefGoogle Scholar

  • Melers, J.D.C. , Bullmore, E. , Brammer, M. , Williams, S.C.R. , Andrew, C. , Sachs, N. , Andrews, C. , Cox, T.S. , Simmons, A. , Woodruff, P. , David., A.S. , Howard, H. (1995). Neural correlates of working memory in a visual letter monitoring task: an fMRI study.. Neuroreport, 7, 109– 112 . First citation in articleGoogle Scholar

  • Morris, N. (1987). Exploring the visuo-spatial scratch pad.. Quarterly Journal of Experimental Psychology, 39A, 409– 430 . First citation in articleCrossrefGoogle Scholar

  • Morris, N. , Jones, D.M. (1990). Memory updating in working memory: The role of the central executive.. British Journal of Psychology, 81, 111– 121 . First citation in articleCrossrefGoogle Scholar

  • Norman, D.A. , Shallice, T. (1986). Attention to action: willed. & automatic control of behavior.. In R.J. Davidson, G.E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: advances in research and theory. New York: Plenum. . First citation in articleCrossrefGoogle Scholar

  • Owen, A. M. , Herrod, N.J. , Menon, D.K. , Clark, J.C. , Downey, S.P.M.J. , Carpenter, A. , Minhas, P.S. , Turkheimer, F.E. , Williams, E.J. , Robbins, T.W. , Sahakian, B.J. , Petrides, M. , Pickard, J.D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex.. European Journal of Neuroscience, 11, 567– 574 . First citation in articleCrossrefGoogle Scholar

  • Patterson, J.V. , Pratt, H. , Starr, A. (1991). Event-related potential correlates of the serial position effect in short-term memory.. Electroencephalography and Clinical Neurophysiology, 78, 424– 437 . First citation in articleCrossrefGoogle Scholar

  • Pratt, H. , Michalewski, H.J. , Barrett, G. , Starr, A. (1989). Brain potentials in a memory scanning task. I. Modality and task effects on potentials to the probes.. Electroencephalography and Clinical Neurophysiology, 72, 407– 421 . First citation in articleCrossrefGoogle Scholar

  • Pratt, H. , Michalewski, H.J. , Patterson, J.V. , Starr, A. (1989a). Brain potentials in a memory scanning task. II. Effects of age on potentials to the probes.. Electroencephalography and Clinical Neurophysiology, 72, 507– 517 . First citation in articleCrossrefGoogle Scholar

  • Pratt, H. , Michalewski, H.J. , Patterson, J.V. , Starr, A. (1989b). Brain potentials in a memory scanning task. III. Potentials to the items being memorized.. Electroencephalography and Clinical Neurophysiology, 73, 41– 51 . First citation in articleCrossrefGoogle Scholar

  • Ragland, D.J. , Glahn, D.C. , Gur, R.C. , Censits, D.M. , Smith, R. , Mozley, D.P. , Alavi, A. , Gur, R.E. (1997). PET regional cerebral blood flow change during working and declarative memory: relationship with task performance.. Neuropsychology, 11, 222– 231 . First citation in articleCrossrefGoogle Scholar

  • Ruchkin, D.S. , Johnson, R. Jr. , Canoune, H. , Ritter, W. (1990). Short-term memory storage and retention: An event-related potential study.. Electroencephalography and Clinical Neurophysiology, 76, 419– 439 . First citation in articleCrossrefGoogle Scholar

  • Sternberg, S. (1966). High-speed scanning in human memory.. Science, 153, 652– 654 . First citation in articleCrossrefGoogle Scholar

  • Vallar, G. , Baddeley, A.D. (1984). Fractionation of working memory: Neuropsychological evidence for a phonological short-term store.. Journal of Verbal Learning and Verbal Behavior, 23, 151– 161 . First citation in articleCrossrefGoogle Scholar

  • Woestenberg, J.C. , Verbaten, M.N. , Slangen, S.L. (1983). The removal of eye movement artifact by regression analysis in the frequency domain.. Biological Psychology, 16, 127– 147 . First citation in articleCrossrefGoogle Scholar