Skip to main content
Published Online:https://doi.org/10.1026/0033-3042/a000302

Zusammenfassung. Nicht nur in Konzepten wie der Bewegten Schule ist körperliche Bewegung zur Unterstützung des Lernens von großer Bedeutung. Inzwischen liegen erste empirische Befunde zum positiven Einfluss spezifischer körperlicher Bewegungen vor, wie zum Beispiel dem Einsatz der Finger beim Erstrechnen oder dem Laufen entlang eines Zahlenstrahls. Diese aktuellen Studien deuten darauf hin, dass Bewegung den Erwerb numerischer Konzepte unterstützen kann. Neue bewegungssensitive Eingabemedien (z. B. Tanzmatte, Kinect Sensor) ermöglichen nicht nur solche Bewegungen in der Interaktion mit einer Lernumgebung, sondern machen diese mess- und damit spezifisch nutzbar. Dadurch können Trainings realisiert werden, die gezielt den Zusammenhang von Zahlen und Raum und damit für die Ausprägung des mentalen Zahlenstrahls relevante Prozesse trainieren. Die Entwicklung solcher Trainings ist von besonderer Bedeutung, weil der mentale Zahlenstrahl wichtig für eine erfolgreiche numerisch-mathematische Entwicklung zu sein scheint. In diesem Artikel stellen wir neben den theoretischen Grundlagen eine Zusammenfassung der Ergebnisse verschiedener eigener Arbeiten zu verkörperlichten numerischen Trainings vor.


Embodied Learning of Numerical Competencies

Abstract. Didactic concepts such as Bewegte Schule (active school) emphasize the importance of physical movements to corroborate learning processes. Moreover, there is empirical evidence demonstrating the beneficial influence of specific bodily movements on numerical processes such as using fingers for initial calculations or walking along a number line. These studies support the idea that the acquisition of numerical concepts can be facilitated by physical movements. New digital media such as dance mats or the Kinect sensor not only allow for physical interactions with learning environments but also for measuring them. In this way, embodied numerical trainings specifically addressing number–space associations and thus the mental number line become possible. Developing such trainings is important as the mental number line is argued to be a building block for adequate numerical–arithmetic development. In this article, we first outline the theoretical background of embodied numerical trainings before giving a summary of recent empirical studies from our laboratory evaluating such trainings.

Literatur

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617 – 645. CrossrefGoogle Scholar

  • Booth, J. L. & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189 – 201. CrossrefGoogle Scholar

  • Boroditsky, L. (2011). How languages construct time. Space, time and number in the brain: Searching for the foundations of mathematical thought. Amsterdam: The Netherlands. CrossrefGoogle Scholar

  • Breithecker, S. D. D. & Dordel, S. (2003). Bewegte Schule als Chance einer Förderung der Lern-und Leistungsfähigkeit. Haltung und Bewegung, 23, 5 – 15. Google Scholar

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3 – 18. CrossrefGoogle Scholar

  • Cattaneo, Z., Fantino, M., Silvanto, J., Vallar, G. & Vecchi, T. (2011). Tapping effects on numerical bisection. Experimental Brain Research, 208, 21 – 28. CrossrefGoogle Scholar

  • de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S. & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111, 4809 – 4813. CrossrefGoogle Scholar

  • Dehaene, S., Bossini, S. & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371 – 396. CrossrefGoogle Scholar

  • Di Luca, S. & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185, 27 – 39. CrossrefGoogle Scholar

  • Domahs, F., Krinzinger, H. & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359 – 367. CrossrefGoogle Scholar

  • Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822 – 826. CrossrefGoogle Scholar

  • Fischer, M. H. & Shaki, S. (2014). Spatial biases in mental arithmetic. The Quarterly Journal of Experimental Psychology, 67, 1457 – 1460. CrossrefGoogle Scholar

  • Fischer, M. H. & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. The Quarterly Journal of Experimental Psychology, 61, 825 – 850. CrossrefGoogle Scholar

  • Fischer, U., Moeller, K., Bientzle, M., Cress, U. & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18, 177 – 183. CrossrefGoogle Scholar

  • Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 586 – 596. Google Scholar

  • Glenberg, A. M. & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558 – 565. CrossrefGoogle Scholar

  • Göbel, S. M., Shaki, S. & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42, 543 – 565. CrossrefGoogle Scholar

  • Gross, J., Hudson, C. & Price, D. (2009). The long term costs of numeracy difficulties. London (UK): Every Child a Chance Trust and KPMG. Google Scholar

  • Ise, E. & Schulte-Körne, G. (2013). Symptomatik, Diagnostik und Behandlung der Rechenstörung. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 41, 271 – 282. LinkGoogle Scholar

  • Jordan, N. C., Kaplan, D., Ramineni, C. & Locuniak, M. N. (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45, 850 – 867. CrossrefGoogle Scholar

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F. et al. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57, 782 – 795. CrossrefGoogle Scholar

  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills—a longitudinal study. Frontiers in Psychology, 4: 459. Google Scholar

  • Landerl, K., Bevan, A. & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8 – 9-year-old students. Cognition, 93, 99 – 125. CrossrefGoogle Scholar

  • Laski, E. V. & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723 – 1743. CrossrefGoogle Scholar

  • Link, T., Moeller, K., Huber, S., Fischer, U. & Nuerk, H.-C. (2013). Walk the number line–An embodied training of numerical concepts. Trends in Neuroscience and Education, 2, 74 – 84. CrossrefGoogle Scholar

  • Link, T., Schwarz, E. J., Huber, S., Fischer, U., Nuerk, H. C., Cress, U. & Moeller, K. (2014). Mathe mit der Matte – Verkörperlichtes Training basisnumerischer Kompetenzen. Zeitschrift Für Erziehungswissenschaft, 17, 257 – 277. CrossrefGoogle Scholar

  • Loetscher, T., Schwarz, U., Schubiger, M. & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18, R60-R62. CrossrefGoogle Scholar

  • McCrink, K. & Opfer, J. E. (2014). Development of Spatial-Numerical Associations. Current Directions in Psychological Science, 23, 439 – 445. CrossrefGoogle Scholar

  • Reeve, R. & Humberstone, J. (2011). Five-to 7-year-olds’ finger gnosia and calculation abilities. Frontiers in Psychology, 2: 359. Google Scholar

  • Roesch, S. & Moeller, K. (2015). Considering digits in a current model of numerical development. Frontiers in Human Neuroscience, 8: 1062. Google Scholar

  • Schwarz, W. & Müller, D. (2006). Spatial associations in number-related tasks: A comparison of manual and pedal responses. Experimental Psychology, 53, 4 – 15. LinkGoogle Scholar

  • Shaki, S. & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232, 43 – 49. CrossrefGoogle Scholar

  • Shaki, S., Fischer, M. H. & Göbel, S. (2012). Direction counts: A comparative study of spatially directional counting biases in cultures with different reading directions. Journal of Experimental Child Psychology, 112, 275 – 281. CrossrefGoogle Scholar

  • Siegler, R. S. & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14, 237 – 250. CrossrefGoogle Scholar

  • Siegler, R. S. & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11, 655 – 661. CrossrefGoogle Scholar

  • Tschentscher, N., Hauk, O., Fischer, M. H. & Pulvermüller, F. (2012). You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59, 3139 – 3148. CrossrefGoogle Scholar