Skip to main content
Published Online:https://doi.org/10.1026//0033-3042.51.4.198

Zusammenfassung. Nach gängiger Auffassung finden Gedächtniskonsolidierungsprozesse während des Schlafs hauptsächlich im REM-Schlaf (REM - “rapid eye movement”) statt. Die hier dargestellten Befunde und methodischen Überlegungen zeigen, daß dieses Konzept zugunsten einer differenzierteren Sichtweise auf Schlaf-assoziierte Konsolidierungsprozesse revidiert werden muß, die neben den Schlafstadien (REM-Schlaf versus Tiefschlaf) die Art der Gedächtnisleistung (deklaratives versus non-deklaratives Gedächtnis) und die Cortisolfreisetzung des Hypothalamus-Hypophysen-Nebennierenrinden-Systems (HHN-System) berücksichtigt. REM-Schlaf findet vor allem in der zweiten Hälfte des nächtlichen Schlafs statt, während die erste Hälfte durch extensive Tiefschlafphasen geprägt wird. Der Vergleich der Gedächtnisleistung nach Phasen frühen und späten Schlafs zeigt, daß Konsolidierung sehr viel stärker durch die von Tiefschlaf geprägte erste Schlafhälfte als durch die von REM-Schlaf geprägte zweite Schlafhälfte gefördert wird. Dies gilt aber nur für hippocampal vermittelte deklarative Gedächtnisleistungen. Non-deklarative, prozedurale Gedächtnisleistungen scheinen dagegen stärker von der zweiten Schlafhälfte zu profitieren. Der Tiefschlaf in der ersten Schlafhälfte geht mit einer Hemmung der Cortisolfreisetzung einher, während die Cortisolspiegel in der zweiten Schlafhälfte stark ansteigen. Cortisol reguliert hippocampale Aktivität direkt über Bindung an Glucocorticoid- (GR) und Mineralocorticoidrezeptoren (MR). Der konsolidierungsfördernde Effekt des frühen Schlafs auf deklarative Gedächtnisinhalte kann durch experimentelle Erhöhung des Cortisolspiegels während dieser Schlafperiode vollständig gehemmt werden, ohne daß der Gehalt an Tiefschlaf verändert wird. Eine vergleichbare Hemmung tritt nach Gabe des selektiven GR-Agonisten Dexamethason auf. Die Ergebnisse zeigen, daß deklaratives Gedächtnis vor allem im frühen Schlaf zu Zeiten, die mit Tiefschlaf einhergehen, konsolidiert wird. Die Hemmung der Cortisolfreisetzung und die dadurch bedingte Inaktivierung hippocampaler Glucocorticoid-rezeptoren in dieser frühen Schlafperiode stellen eine notwendige Voraussetzung für diesen Konsolidierungsprozeß dar.


Memory consolidation during sleep: The meaning of sleep phases and stress hormone release

Abstract. It is commonly believed that memory consolidation during sleep takes place primarily during REM sleep (REM - ‘rapid eye movement’). Here we present data and methodological considerations indicating that this concept should be replaced in favor of a more differentiated view on sleep associated memory formation, which aside from the different sleep stages (REM sleep versus slow wave sleep) takes into account the type of memory (declarative versus non-declarative) and the release of cortisol from the hypothalamo-pituitary-adrenal (HPA) system. Most of REM sleep occurs during the second half of nocturnal sleep whereas the first half is dominated by extensive periods of slow wave sleep (SWS). The comparison of memory performance after periods of early and late retention sleep indicates that consolidation benefits more from the first half of sleep dominated by SWS than by the second half of sleep dominated by REM sleep. However, this is true only for declarative memories mediated via hippocampal structures. In contrast, non-declarative procedural memories appear to benefit more from the second than first half of sleep. SWS in the first half of sleep is associated with a distinct inhibition of cortisol release whereas cortisol blood concentrations are strongly increased during the second half of sleep. Cortisol directly regulates hippocampal neuronal activity via glucocorticoid receptors (GR) and mineralicorticoid receptors (MR). The improving effect of early sleep on consolidation of declarative memories can be completely blocked by experimentally enhancing blood cortisol concentrations during this period of sleep. A comparable blockade can be induced by administration of dexamethason which is a selective GR agonist. Results show that declarative memories are consolidated primarily during periods of early sleep associated with SWS. The inhibition of cortisol release leading to an inactivation of hippocampal GR during this early sleep period, represents a necessary prerequisite for the consolidation process.

Literatur

  • Aschoff, J. Fatranska, M. Gerecke, U. Giedke, H. (1974). Twenty-four-hour rhythms of rectal temperature in humans: Effects of sleep-interruptions and of test sessions.. Pflügers Archives, 346, 215– 222 CrossrefGoogle Scholar

  • Barrett, T. R. Ekstrand, B. R. (1972). Effect of sleep on memory: III. Controlling for time-of-day effects.. Journal of Experimental Psychology, 96, 321– 327 CrossrefGoogle Scholar

  • Bierwolf, C. Struve, K. Marshall, L. Fehm, H.L. Born, J. (1997). Slow wave sleep drives inhibition of pituitary-adrenal secretion in humans.. Journal of Neuroendocrinology, 9, 479– 484 CrossrefGoogle Scholar

  • Born, J. Fehm, H. L. (1998). Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system.. Experimental and Clinical Endocrinology & Diabetes, 106, 153– 164 CrossrefGoogle Scholar

  • Born, J. DeKloet, R. Wenz, H. Kern, W. Fehm, H. L. (1991). Changes in slow wave sleep after glucocorticoids and antimineralocorticoids: A cue for central type I corticotropin releasing hormone in humans.. Journal of Clinical Endorinology and Metabolism, 23, 126– 130 Google Scholar

  • Born, J. Hansen, K. Marshall, L. Mölle, M. Fehm, H. L. (1999). Timing the end of nocturnal sleep.. Nature, 397, 29– 30 CrossrefGoogle Scholar

  • Born, J. Steinbach, D. Kern, W. Fehm, H. L. (1997). Blocking of central nervous mineralocorticoid receptors counteracts inhibition of pituitary-adrenal activity in human sleep.. Journal of Clinical Endorinology and Metabolism, 82, 1106– 1110 Google Scholar

  • Buzsáki, G. (1989). A two-stage model of memory trace formation: A role for ‘noisy’ brain states.. Neuroscience, 31, 551– 570 CrossrefGoogle Scholar

  • Buzsáki, G. (1996). The hippocampo-neocortical dialogue.. Cerebral Cortex, 6, 81– CrossrefGoogle Scholar

  • Cartwright, R. D. (1972). Problem solving in REM, NREM, and waking.. Psychophysiology, 9, 108– Google Scholar

  • Castaldo, V. Krynicki, V. Goldstein, J. (1974). Sleep stages and verbal memory.. Perceptual and Motor Skills, 39, 1023– 1030 CrossrefGoogle Scholar

  • Cipolli, C. (1995). Sleep, dreams, and memory: An overview.. Journal of Sleep Research, 4, 2– 9 CrossrefGoogle Scholar

  • DeKloet, E. R. Reul, J. M. H. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems.. Psychoneuroendocrinology, 12, 83– 105 CrossrefGoogle Scholar

  • DeKloet, E. R. Vreugdenhil, E. Oitzl, M. S. Joëls, M. (1998). Brain cortiocteroid receptor balance in health and disease.. Endocrine Review, 19, 269– 301 Google Scholar

  • DeQuervain, D. J. F. Roozendaal, B. McGaugh, J. L. (1998). Stress and glucocorticoids impair retrieval of long-term spatial memory.. Nature, 394, 787– 790 CrossrefGoogle Scholar

  • Douma, B. R. Korte, S. M. Buwalda, B. LaFleur, S. E. Bohus, B. Luiten, P. G. (1998). Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning.. Psychoneuroendocrinology, 23, 33– 44 CrossrefGoogle Scholar

  • Ekstrand, B. R. Barrett, T. R. West, J. N. Maier, W. G. (1977). The effect of sleep on human long-term memory.. In R. R. Drucker-Colin & J. L. McGaugh (Eds.), Neurobiology of Sleep and Memory (pp. 419-438). New York: Academic Press. Google Scholar

  • Ekstrand, B. R. Sullivan, M. G. Parker, D. F. West, J. N. (1971). Spontanous recovery and sleep.. Journal of Experimental Psychology, 88, 142– 144 CrossrefGoogle Scholar

  • Empson, J. A. C. Clarke, P. R. F. (1970). Rapid eye movements and remembering.. Nature, 227, 287– 288 CrossrefGoogle Scholar

  • Fehm, H. L. Bendowitsch, R. Kern, W. Fehm-Wolfsdorf, G. Pauschinger, P. Born, J. (1986). Influences of cortiosteroids, desamethasone and hydrocortisone on sleep in humans.. Neuropsycholbiology, 16, 198– 204 CrossrefGoogle Scholar

  • Feldman, R. Dement, W. (1968). Possible relationships between REM sleep and memory consolidation.. Psychophysiology, 5, 243– 251 Google Scholar

  • Greenberg, R. Pearlman, C. Schwartz, W. R. Grossman, H. (1983). Memory, Emotion, and REM sleep.. Journal of Abnormal Psychology, 92, 378– 381 CrossrefGoogle Scholar

  • Greenberg, R. Pillard, R. Perlman, C. (1972). The effect of REM deprivation on adaptation to stress.. Psychosomatic Medicine, 34, 237– 262 CrossrefGoogle Scholar

  • Horner, H. C. Packan, D. R. Sapolsky, R. M. (1990). Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia.. Neuroendocrinology, 52, 57– 64 CrossrefGoogle Scholar

  • Jenkins, J. G. Dallenbach, K. M. (1924). Oblivicence during sleep and waking.. American Journal of Psychologym, 35, 605– 612 CrossrefGoogle Scholar

  • Joels, M. De Kloet, E. R. (1994). Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.. Progress in Neurobiology, 43, 1– 36 CrossrefGoogle Scholar

  • Karni, A. Tanne, D. Rubenstein, B. S. Askenasy, J. J. M. Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill.. Science, 265, 679– 681 CrossrefGoogle Scholar

  • Kern, W. Dodt, C. Born, J. Fehm, H. L. (1996). Changes in Cortisol and Growth Hormone secretion during nocturnal sleep in the course of aging.. Journal of Gerontology, 51, M3– M9 Google Scholar

  • Kirschbaum, C. Wolf, O. T. May, M. Wippich, W. Hellhammer, D. H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults.. Life Sciences, 58, 1475– 1483 CrossrefGoogle Scholar

  • Lewin, I. Glaubman, H. (1975). The effect of REM deprivation: Is it detrimental, beneficial, or neutral?. Psychophysiology, 12, 349– 353 CrossrefGoogle Scholar

  • Lovatt, D. J. Warr, P.B. (1968). Recall after sleep.. American Journal of Psychology, 81, 253– 257 CrossrefGoogle Scholar

  • Lupien, S. J. McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: integration of animal and human model studies.. Brain Research Reviews, 24, 1– 27 CrossrefGoogle Scholar

  • Maquet, P. Peters, J. M. Aerts, J. Delfiore, G. Dugueldre, C. Luxen, A. Franck, G. (1996). Functional neuroanatomy of human rapid eye movement sleep and dreaming.. Nature, 383, 163– 166 CrossrefGoogle Scholar

  • Markowitsch, H. J. (1996). Neuropsychologie des menschlichen Gedächtnisses.. Spektrum der Wissenschaft, 9, 52– 61 Google Scholar

  • Meijer, O. C. DeLange, E. C. M. Breimer, D. D. DeBoer, A. G. Workel, J. O. DeKloet, E. R. (1998). Penetration of dexamethasoneinto brain glucocorticoid targets is enhanced in mdria P-glycoprotein knockout mice.. Endocrinology, 4, 1789– 1793 Google Scholar

  • Muzio, J. W. Roffwarg, H. P. Anders, C. B. Muzio, L. G. (1972). Retention of rote learned meaningful verbal material and alternation in the normal EEG pattern.. Psychophysiology, 9, 108– Google Scholar

  • Newman, E. B. (1939). Forgetting of meaningful material during sleep and waking.. American Journal of Psychology, 65– 71 CrossrefGoogle Scholar

  • Oitzl, M. S. DeKloet, E. R. (1992). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.. Behavioral Neuroscience, 106, 62– 71 CrossrefGoogle Scholar

  • Pavlides, C. Watanabe, Y. Magarinos, A. M. McEwen, B. S. (1995a). Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation.. Neuroscience, 68, 387– 394 CrossrefGoogle Scholar

  • Pavlides, C. Kimura, A. Magarinos, A. M. McEwen, B. S. (1995b). Hippocampal homosynaptic long-term depression/depotentiation induced by adrenal steroids.. Neuroscience, 68, 379– 85 CrossrefGoogle Scholar

  • Plihal, W. Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory.. Journal of Cognitive Neuroscience, 9, 534– 547 CrossrefGoogle Scholar

  • Plihal, W. Born, J. (1999a). Effects of early and late nocturnal sleep on priming and spatial memory.. Psychophysiology, 36, 571– 582 CrossrefGoogle Scholar

  • Plihal, W. Born, J. (1999b). Memory consolidation in human sleep depends on inhibition of glucocorticoid release.. Neuroreport, 10, 2741– 2747 CrossrefGoogle Scholar

  • Plihal, W. Pietrowsky, R. Born, J. (1999). Dexamethasone blocks sleep induced improvement of declarative memory.. Psychoneuroendocrionology, 24, 312– 331 Google Scholar

  • Poe, G. R. Nitz, D. A. McNaughton, B. L. Barnes, C. A. (1998). Experience-dependent reversal of theta phase discharge profiles in REM-sleep . (unpublished manuscript). Google Scholar

  • Qui, Y. McNaughton, B. L. Skaggs, W. E. Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles.. Philosophical Transactions of the Royal Society of London B-Biological Science, 352, 1525– 33 CrossrefGoogle Scholar

  • Rees, H. D. Stumpf, W. E. Sar, M. (1975). Audiographic studies with [3H]dexamethasone in the rat brain and pituitary.. Cell Tissue Research, 182, 262– 269 Google Scholar

  • Roozendaal, B. McGaugh, J. L. (1997). Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in dorsal hippocampus of rats.. European Journal of Neuroscience, 9, 76– 83 CrossrefGoogle Scholar

  • Selye, H. (1956). The stress of life. . New York: McGraw-Hill. Google Scholar

  • Skaggs, W. E. McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience.. Science, 271, 1870– 3 CrossrefGoogle Scholar

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.. Psychological Review, 99, 195– 231 CrossrefGoogle Scholar

  • Squire, L. R. Kandel, E. (1999). Memory - From Mind to Molecules. . New York: Scientific American Library. Google Scholar

  • Tilley, A. J. Empson, J. A. (1978). REM sleep and memory consolidation.. Biological Psychology, 6, 293– 300 CrossrefGoogle Scholar

  • Tilley, A. J. Empson, J. A. (1981). Picture recall and recognition following total and selective sleep deprivation.. In W. P. Koella (Ed.), Sleep '80 (pp. 367-369). Basel: Karger. Google Scholar

  • VanCauter, E. Aschoff, J. (1989). Endocrine and other Biological Rhythms.. In L. J. DeGroot (Ed.), Endocrinology. Vol. 3 (pp. 2658-2705). Philadelphia: Saunders. Google Scholar

  • VanHaarst, A. D. DeKloet, E. R. (1997). Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus.. Neurochemical Research, 22, 1323– 1328 CrossrefGoogle Scholar

  • VanHulzen, Z. J. M. (1986). Paradoxical sleep deprivation and information processing in the rat.. Thèse. Nijmegen: Université de Nijmegen. Google Scholar

  • VanHulzen, Z. J. M. Coenen, A. M. (1980). The pendulum technique for PS deprivation in rats.. Physiology and Behavior, 25, 807– 811 CrossrefGoogle Scholar

  • Wilson, M. A. McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep.. Science, 265, 676– 679 CrossrefGoogle Scholar

  • Yaroush, R. Sullivan, M. J. Ekstrand, B. R. (1971). Effect of sleep on memory: II. Differential effect of the first and second half of the night.. Journal of Experimental Psychology, 88, 361– 366 CrossrefGoogle Scholar