Skip to main content
Log in

Transcription factories: quantitative studies of nanostructures in the mammalian nucleus

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Transcription by the three nuclear RNA polymerases is carried out in transcription factories. This conclusion has been drawn from estimates of the total number of nascent transcripts or active polymerase molecules and the number of transcription sites within a cell. Here we summarise the variety of methods used to determine these parameters, discuss their associated problems and outline future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht B, Failla AV, Schweitzer A, Cremer C (2002) Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Appl Opt 41: 80-87.

    PubMed  Google Scholar 

  • Becker M, Baumann C, John S et al. (2002) Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep 3: 1188-1194.

  • Bentley D (2002) The mRNA assembly line: transcription and processing machines in the same factory. Curr Opin Cell Biol 14: 336-342.

    Article  PubMed  CAS  Google Scholar 

  • Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: alpha-amanitin RNA polymerase II cocrystal at 2.8A resolution. Proc Natl Acad Sci USA 99: 1218-;1222.

    Article  PubMed  CAS  Google Scholar 

  • Caron H, van Schaik B, van derMee Met al. (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291: 1289-1292.

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1974). RNA polymerases. In: Boyer PD, ed. The Enzymes. New York: Academic Press, pp 261-331.

    Google Scholar 

  • Cmarko D, Verschure PJ, Martin TE et al. (1999) Ultrastructure analysis of transcription and splicing in the nucleus after Br-UTP microinjection. Moll Biol Cell 10: 211-223.

    CAS  Google Scholar 

  • Cook PR (1999) The organization of replication and transcription. Science 284: 1790-1795.

    Article  PubMed  CAS  Google Scholar 

  • Cox RF (1976) Quantitation of elongating form A and B RNA polymerases in chick oviduct nuclei and effects of estradiol. Cell 7: 455-465.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292-301.

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S et al. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119-1131.

    Article  PubMed  CAS  Google Scholar 

  • Dahmus ME (1996) Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem 271: 19009-19012.

    PubMed  CAS  Google Scholar 

  • Dikstein R, Zhou S, Tjian R (1996) Human TAFII 105 is a cell type-speci□c TFIID subunit related to hTAFII130. Cell 87: 137-146.

    Article  PubMed  CAS  Google Scholar 

  • Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18: 252-258.

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356: 297-310.

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hoffmann-Rohrer U, Hu Q et al. (2002a) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298: 1623-1626.

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, McNally JG, Cohen J, Misteli T (2002b) Quantitation of GFP-fusion proteins in single living cells. J Struct Biol 140: 92-99.

    Article  PubMed  CAS  Google Scholar 

  • Failla AV, Cavallo A, Cremer C (2002a) Subwavelength size determination by spatially modulated illumination virtual microscopy. Appl Opt 41: 6651-6659.

    PubMed  Google Scholar 

  • Failla AV, Spoeri U, Albrecht B, Kroll A, Cremer C (2002b) Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl Opt 41: 7275-7283.

    PubMed  Google Scholar 

  • Fakan S, Puvion E (1980) The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 65: 255-299.

    Article  PubMed  CAS  Google Scholar 

  • Fay FS, Taneja KL, Shenoy S, Lifshitz L, Singer RH (1997) Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts SC35 and poly(A). Exp Cell Res 231: 27-37.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamon AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139: 1597-1610.

    Article  PubMed  CAS  Google Scholar 

  • Gelles J, Landick R (1998) RNA polymerase as a molecular motor. Cell 93: 13-16.

    Article  PubMed  CAS  Google Scholar 

  • Grande MA, van der Kraan I, de Jong L, van Driel R (1997) Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J Cell Sci 110: 1781-1791.

    PubMed  CAS  Google Scholar 

  • Grif□ths G (1993) Fine Structure Immunocytochemistry. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Horn PJ, Peterson CL(2002) Molecular biology. Chromatin higher order foldingSwrapping up transcription. Science 297: 1824-1827.

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Cook PR, Schofer C, Mosgoller W, Wachtler F (1994a) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107: 639-648.

    PubMed  CAS  Google Scholar 

  • Hozak P, Jackson DA, Cook PR (1994b) Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J Cell Sci 107: 2191-2202.

    PubMed  Google Scholar 

  • Iborra FJ, Cook PR (1998) The size of sites containing SR proteins in human nuclei: problems associated with characterizing small structures by immunogold labeling. J Histochem Cytochem 46: 985-992.

    PubMed  CAS  Google Scholar 

  • Iborra FJ, Pombo A, Jackson DA, Cook PR (1996a) Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J Cell Sci 109: 1427-1436.

    PubMed  CAS  Google Scholar 

  • Iborra FJ, Pombo A, McManus J, Jackson DA, Cook PR (1996b) The topology of transcription by immobilized polymerases. Exp Cell Res 229: 167-173.

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12: 1059-1065.

    PubMed  CAS  Google Scholar 

  • Jackson DA, Iborra FJ, Manders EM, Cook PR (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9: 1523-1536.

    PubMed  CAS  Google Scholar 

  • Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133: 225-234.

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Tao Y, Roeder RG, Cook PR (1999) Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 19: 5383-5392.

    PubMed  CAS  Google Scholar 

  • Kimura H, Sugaya K, Cook PR (2002) The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159: 777-782.

    Article  PubMed  CAS  Google Scholar 

  • Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14: 2452-2460.

    Article  PubMed  CAS  Google Scholar 

  • Lai E, Darnell JE Jr. (1991) Transcriptional control in hepatocytes: a window on development. Trends Biochem Sci 16: 427-430.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921.

    Article  PubMed  CAS  Google Scholar 

  • Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14: 2551-2569.

    Article  PubMed  CAS  Google Scholar 

  • Lercher MJ, Urrutia AO, Hurst LD (2002) Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 31: 180-183.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416: 499i506.

    Article  Google Scholar 

  • Miller OL Jr., Bakken AH (1972) Morphological studies of transcription. Acta Endocrinol Suppl Copenh 168: 155i177.

    Google Scholar 

  • Misteli T (2001a) The concept of self-organization in cellular architecture. J Cell Biol 155: 181-185.

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2001b) Protein dynamics: Implications for nuclear architecture and gene expression. Science 291: 843-847.

    Article  PubMed  CAS  Google Scholar 

  • Mosgoeller W, Schofer C, Wesierska-Gadek J et al. (1998) Ribosomal gene transcription is organized in foci within nucleolar components. Histochem Cell Biol 109: 111-118.

    Article  PubMed  CAS  Google Scholar 

  • Muller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K (2002) Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 79: 1-43.

    Article  PubMed  Google Scholar 

  • Orphanides G, Reinberg D (2002) A unifi;ed theory of gene expression. Cell 108: 439-451.

    Article  PubMed  CAS  Google Scholar 

  • Patturajan M, Schulte RJ, Sefton BM et al. (1998) Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 273: 4689-4694.

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Cuello P, Schul W et al. (1998) Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J 17: 1768-1778.

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Hollinshead M, Cook PR (1999a) Bridging the resolution gap: Imaging the same transcription factories in Transcription factories 469 cryosections by light and electron microscopy. J Histochem Cytochem 47: 471-480.

    PubMed  CAS  Google Scholar 

  • Pombo A, Jackson DA, Hollinshead M et al. (1999b) Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J 18: 2241-2253.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot N (2000) Connecting transcription to messenger RNA processing. Trends Biochem Sci 25: 290-293.

  • Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin □brils and interchromatin granules. Exp Cell Res 229: 217-225.

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Besse S, Diaz JJ et al. (1997) Identi□cation of transcription factories in nuclei of HeLa cells transiently expressing the Us11 gene of herpes simplex virus type 1. Gene Expr 6: 315-332.

    PubMed  CAS  Google Scholar 

  • Reimer G, Raska I, Tan EM, Scheer U (1987) Human autoantibodies: probes for nucleolus structure and function. Virchows Arch B Cell Pathol Incl Mol Pathol 54: 131-143.

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Sullivan KF, Weinzierl P, Stelzer EH, Zink D (2001) Large-scale chromatin □bers of living cells display a discontinuous functional organization. Chromosoma 110: 39-51.

    PubMed  CAS  Google Scholar 

  • Spector DL (2001) Nuclear domains. JCell Sci 114: 2891-2893.

    CAS  Google Scholar 

  • Stenoien DL, Mielke M, Mancini MA (2002) Intranuclear ataxin1 inclusions contain both fast-and slow-exchanging components. Nat Cell Biol 4: 806-810.

    Article  PubMed  CAS  Google Scholar 

  • Stierhof YD, Schwarz H (1989) Labeling properties of sucrose-infiltrated cryosections. Scanning Microsc Suppl 3: 35-46.

    PubMed  CAS  Google Scholar 

  • Sugden B, Keller W (1973) Mammalian deoxyribonucleic acid-dependent ribonucleic acid polymerases. I. Purification and properties of an amanitin-sensitive ribonucleic acid polymerase and stimulatory factors from HeLa and KB cells. J Biol Chem 248: 3777-3788.

    PubMed  CAS  Google Scholar 

  • Szymanski M, Barciszewski J (2002) Beyond the proteome: non-coding regulatory RNAs. Genome Biol 3: Rev iews0005.

  • Thiry M, Goessens G (1992) Where, in the nucleolus, are the rRNA genes located? Exp Cell Res 200: 1-4.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1980) Immunochemistry on ultrathin frozen sections. Histochem J 12: 381-403.

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I et al. (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122: 283-293.

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Manders EE, van derKraan I et al. (1994a) RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci 107: 1449-1456.

    PubMed  CAS  Google Scholar 

  • Wansink DG, Nelissen RL, de Jong L (1994b) In vitro splicing of pre-mRNA containing bromouridine. Mol Biol Rep 19: 109-113.

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Sibon OC, Cremers FF, van Driel R, de Jong L (1996) Ultrastructural localization of active genes in nuclei of A431 cells. J Cell Biochem 62: 10-18.

    Article  PubMed  CAS  Google Scholar 

  • Warren SL, Landolf AS, Curtis C, Morrow JS (1992) Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle. J Cell Sci 103: 381-388.

    PubMed  CAS  Google Scholar 

  • Wei X, Somanathan S, Samarabandu J, Berezney R (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146: 543-558.

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1979) Stereological Methods: Practical Methods for Biological Morphometry, 1. London: Academic Press.

    Google Scholar 

  • Weibel ER (1980) Stereological Methods: Theoretical Foundations, 2. London: Academic Press.

    Google Scholar 

  • Zeng C, Kim E, Warren SL, Berget SM (1997) Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J 16: 1401-1412. 470 S. Martin &;; A. Pombo

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S., Pombo, A. Transcription factories: quantitative studies of nanostructures in the mammalian nucleus. Chromosome Res 11, 461–470 (2003). https://doi.org/10.1023/A:1024926710797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024926710797

Navigation