Skip to main content
Log in

Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pulse-echo overlap measurements of ultrasonic wave velocity have been used to determine the elastic stiffness moduli and related elastic properties of ceramic transition-metal carbides TiC and TaC as functions of temperature in the range 135–295 K and hydrostatic pressure up to 0.2 GPa at room temperature. The carbon concentration of each ceramic has been determined using an oxidation method: the carbon-to-metal atomic ratios are both 0.98. In general, the values determined for the adiabatic bulk modulus (B S), shear stiffness (μ), Young's modulus (E), Poisson's ratio (σ) and acoustic Debye temperature (ΘD) for the TiC and TaC ceramics agree well with the experimental values determined previously. The temperature dependences of the longitudinal stiffness (C L) and shear stiffness measured for both ceramics show normal behaviour and can be approximated by a conventional model for vibrational anharmonicity. Both the bulk and Young's moduli of the ceramics increase with decreasing temperature and do not show any unusual effects. The results of measurements of the effects of hydrostatic pressure on the ultrasonic wave velocity have been used to determine the hydrostatic pressure derivatives of elastic stiffnesses and the acoustic-mode Grüneisen parameters. The values determined at 295 K for the hydrostatic pressure derivatives (∂C L/∂P)P = 0, (∂μ/∂P)P = 0 and (∂B S/∂P)P = 0 for TiC and TaC ceramics are positive and typical for a stiff solid. The adiabatic bulk modulus B S and its hydrostatic pressure derivative (∂B S/∂P)P = 0 of TiC are in good agreement with the results of recent high pressure X-ray diffraction measurements and theoretical calculations. The longitudinal (γL), shear (γS) and mean (γel) acoustic-mode Grüneisen parameters of TiC and TaC ceramics are positive: the zone-centre acoustic phonons stiffen under pressure. The shear γS is much smaller than the longitudinal γL. The relatively larger values estimated for the thermal Grüneisen parameter γth in comparison to γel for the TiC and TaC ceramics indicate that the optical phonons have larger Grüneisen parameters. Hence knowledge of the elastic and nonlinear acoustic properties sheds light on the thermal properties of ceramic TiC and TaC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Toth, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).

    Google Scholar 

  2. W. S. Williams, J. Min. Met. Mater. Soc. 49 (1997) 38.

    Google Scholar 

  3. W. S. Williams in “Science of Hard Materials 3,” edited by V. K. Sarin (Elsevier Applied Science, London, 1988).

    Google Scholar 

  4. W. S. Williams, Int. J. Refract. Met. &; Hard Mater. 17 (1999) 21.

    Google Scholar 

  5. R. H. J. Hannink and M. J. Murray, J. Mater. Sci. 9 (1974) 223.

    Google Scholar 

  6. V. G. Bukatov, O. S. Korostin and V. I. Knyazev, Inorg. Mater. 11 (1975) 313.

    Google Scholar 

  7. C. K. Jun and P. T. B. Shaffer, J. Less-Common Metal. 23 (1971) 367.

    Google Scholar 

  8. H. L. Brown, P. E. Armstrong and C. P. Kempter, J. Chem. Phys. 45 (1966) 547.

    Google Scholar 

  9. C. Kral, W. Lengauer, D. Rafaja and P. Ettmayer, J. Alloys Comp. 265 (1998) 215.

    Google Scholar 

  10. R. Chang and L. J. Graham, J. Appl. Phys. 37 (1966) 3778.

    Google Scholar 

  11. L. Pintschovius, W. Reichardt and B. Scheerer, J. Phys. C: Solid State Phys. 11 (1978) 1557.

    Google Scholar 

  12. E. K. Storms, “Refractory Carbides” (Academic Press, New York, 1968).

    Google Scholar 

  13. M. Desmaison-Brut, N. Alexandre and J. Desmaison, J. Eur. Ceram. Soc. 17 (1997) 1325.

    Google Scholar 

  14. D. R. Lide (ed.), “Handbook of Chemistry and Physics” (75th edn., CRC Press, London, 1994).

    Google Scholar 

  15. M. Yamashita, J. Phys. E: Sci. Instrum. 20 (1987) 1457.

    Google Scholar 

  16. C. C. Wang, S. A. Akbar, W. Chen and V. D. Patton, J. Mater. Sci. 30 (1995) 1627.

    Google Scholar 

  17. F. A. Modine, M. D. Foegelle, C. B. Finch and C. Y. Allison, Phys. Rev. B 40 (1989) 9558.

    Google Scholar 

  18. E. P. Papadakis, J. Acoust. Soc. Amer. 42 (1967) 1045.

    Google Scholar 

  19. E. Kittinger, Ultrasonics 15 (1977) 30.

    Google Scholar 

  20. R. N. Thurston and K. Brugger, Phys. Rev. 133 (1964) A1604.

    Google Scholar 

  21. D. L. Price and B. R. Cooper, Phys. Rev. 39 (1989) 4945.

    Google Scholar 

  22. P. C. Waterman and R. Truell, J. Math. Phys. 2 (1961) 512.

    Google Scholar 

  23. C. M. Sayers and R. L. Smith, Ultrasonics 20 (1982) 201.

    Google Scholar 

  24. Q. Yang, W. Lengauer, T. Koch, M. Schreerer and I. Smid, J. Alloys Comp. 309 (2000) L5.

    Google Scholar 

  25. I. N. Frantsevich, E. A. Zhurakovskii and A. B. Lyashchenko, Inorg. Mater. 3 (1967) 6.

    Google Scholar 

  26. J. J. Gilman and B. W. Roberts, J. Appl. Phys. 32 (1961) 32.

    Google Scholar 

  27. R. W. Bartlett and C. W. Smith, ibid. 38 (1967) 5428.

    Google Scholar 

  28. D. J. Rowcliffe and G. E. Hollox, J. Mater. Sci. 6 (1971) 1270.

    Google Scholar 

  29. W. Wolf, R. Podloucky, T. Antretter and F. D. Fischer, Phil. Mag. B 79 (1999) 839.

    Google Scholar 

  30. W. S. Williams and R. D. Schaal, J. Appl. Phys. 33 (1962) 955.

    Google Scholar 

  31. N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, R. Ahuja and B. Johansson, J. Alloys. Comp. 289 (1999) 24.

    Google Scholar 

  32. V. P. Zhukov, V. A. Gubanov, O. Jepsen, N. E. Christensen and O. K. Andersen, J. Phys. Chem. Solids 49 (1988) 841.

    Google Scholar 

  33. D. L. Price, B. R. Cooper and J. M. Wills, Phys. Rev. B 46 (1992) 11368.

    Google Scholar 

  34. M. Guemmaz, A. Mosser, R. Ahujab and B. Johansson, Sol. St. Comm. 110 (1999) 299.

    Google Scholar 

  35. P. T. Jochym, K. Parlinski and M. Sternik, Eur. Phys. J. B 10 (1999) 9.

    Google Scholar 

  36. S. MÉÇabih, N. Amrane, Z. Nabi, B. Abbar and H. Aourag, Physica A 285 (2000) 392.

    Google Scholar 

  37. R. Ahuja, O. Eriksson, J. M. Wills and B. Johansson, Phys. Rev. B 53 (1996) 3072.

    Google Scholar 

  38. Y. A. Chang, L. E. Toth and Y. S. Tyan, Metall. Trans. 2 (1971) 315.

    Google Scholar 

  39. A. Krajewski, L. D'Alessio and G. de Maria, Cryst. Res. Technol. 33 (1998) 341.

    Google Scholar 

  40. H. Stuart and N. Ridley, J. Iron. St. Inst. 208 (1970) 1087.

    Google Scholar 

  41. S. C. Lakkad, J. Appl. Phys. 42 (1971) 4277.

    Google Scholar 

  42. R. N. Thurston, Proc. IEEE 53 (1965) 1320.

    Google Scholar 

  43. Q. Wang, G. A. Saunders, D. P. Almond, M. Cankurtaran and K. C. Goretta, Phys. Rev. B 52 (1995) 3711.

    Google Scholar 

  44. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30 (1944) 244.

    Google Scholar 

  45. T. Sekine and T. Kobayashi, J. Mater. Proc. Technol. 85 (1999) 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, S.P., Cankurtaran, M. & James, B. Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC. Journal of Materials Science 38, 1107–1115 (2003). https://doi.org/10.1023/A:1022845109930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022845109930

Keywords

Navigation