Skip to main content
Log in

Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The endothelization of cardiovascular implants is desirable to improve their blood compatibility. The capacity of the endothelial cells to attach, migrate, proliferate and function on the implant surface depends on the presence of matrix proteins such as fibronectin (FN) and fibrinogen (FNG). In this study, we show that the deposition of fibrinogen into extracellular matrix-like structures by human umbilical vein endothelial cells (HUVEC) is dependent on FN matrix formation. We found further that the process of organization of both adsorbed and soluble FN and FNG is dependent on the wettability of materials since it was observed only on a hydrophilic and not on a hydrophobic model surface. β3 integrin was involved in the process of cell attachment to adsorbed FNG, while the mechanism of FNG fibrillogenesis required the activity of the β1 integrin. Studies of EC morphology showed the predominant peripheral organization of actin filaments and the formation of distinct leading and trailing cell edges suggesting a motile phenotype of cells when they are seeded on FNG. In summary, we concluded that adsorbed fibrinogen may enhance the motility of HUVEC and that soluble FNG requires FN matrix assembly to be organized in fibrilar structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tassiopoulos and H. Greisler, J. Biomater. Sci. Polymer Edn. 11 (2000) 1275.

    Google Scholar 

  2. A. Schneider, R. Melmed, H. Schwalb, M. Karck and G. Uretzki, J. Vasc. Surg. 15 (1992) 649.

    Google Scholar 

  3. J. Brash, J. Biomater. Sci. Polymer Edn. 11 (2000) 1135.

    Google Scholar 

  4. R. Tzoneva, M. Heuchel, T. Groth, G. Altankov, W. Albrecht and D. Paul ibid. (in press).

  5. G. Altankov and T. Groth, J. Mater. Sci. — Mater. M. 5 (1994) 732.

    Google Scholar 

  6. R. Hynes, in “Fibronectins” (Springer-Verlag, New York, 1990).

    Google Scholar 

  7. R. Hynes, Cell 48 (1987) 549.

    Google Scholar 

  8. E. Hay, in “Cell Biology of Extracellular Matrix, 2nd edn.”, edited by E. Hay, (Plenum Press, New York, 1991) p. 468.

    Google Scholar 

  9. F. Grinnell, J. Cell Biol., 103 (1986) 2697.

    Google Scholar 

  10. Z. Avnur and B. Geiger, Cell 25 (1981) 121.

    Google Scholar 

  11. R. Christopher, A. Kowalchyk and P. Mckewonlongo, J. Cell Sci. 110 (1997) 569.

    Google Scholar 

  12. G. Altankov, F. Grinnell and T. Groth, J. Biomed. Mater. Res. 30 (1996) 385.

    Google Scholar 

  13. G. Altankov, T. Groth, N. Krasteva, W. Albrecht and D. Paul, J. Biomater. Sci. Polymer Edn. 8 (1997) 721.

    Google Scholar 

  14. D. Iuliano, S. Saavedra and G. Truskey, J. Biomed. Mater. Res. 27 (1993) 1103.

    Google Scholar 

  15. E. Dejana, L. Languino, N. Polentarutti, G. Balconi, J. Ryckewaert, M. Larrieu, M. Donati, A. Mantovani and G. Marguerie, J. Clin. Invest. 75 (1985) 11.

    Google Scholar 

  16. M. Chang, B. Wang and T. Huang, Thromb. Haemost. 74 (1995) 764.

    Google Scholar 

  17. M. Ge, G. Tang, T. Ryan and A. Malik, J. Clin. Invest. 90 (1992) 2508.

    Google Scholar 

  18. M. Wissink, R. Beernink, A. Poot, G. Engbers, T. Beugeling, W. Van Aken and J. Feijen, Biomaterials 22 (2001) 2283.

    Google Scholar 

  19. D. Cheresh, Proc. Natl. Acad. Sci. 84 (1987) 6471.

    Google Scholar 

  20. D. Cheresh, S. Berliner, V. Vicente and Z. Ruggery, Cell 58 (1989) 945.

    Google Scholar 

  21. G. Guadiz, L. Sporn and P. Simpson-Haidaris, Blood 90 (1997) 2644.

    Google Scholar 

  22. R. Clark, J. Lanigan, P. Dellapelle, E. Manseau, H. Dvorak and R. Colvin, J. Invest. Dermatol. 79 (1982) 264.

    Google Scholar 

  23. D. Donaldson, J. Mahan, D. Amrani and J. Hawiger, J. Cell Sci. 94 (1989) 101.

    Google Scholar 

  24. D. Mosher, J. Sottile, C. Wu and J. Mcdonald, Curr. Opin. Cell Biol. 4 (1992) 810.

    Google Scholar 

  25. N. Hallab, K. Bundy, K. O'Connor, R. Clark and R. Moses, J. Long Term Eff. Med. Implants 5 (1995) 209.

    Google Scholar 

  26. E. Harlow and D. Lane, in “Antibodies” (Cold Spring Harbor, NY, 1988) p. 726

  27. E. Dejana, in “Vascular Endothelium: Interactions with Circulating Cells”, edited by J. L. Gordon (Elsevier Science Publishers BV, 1991) p. 31.

  28. E. Dejana, M. Lampugnani, M. Giorgi, M. Gaboli and P. Marchisio, Blood 75 (1990) 1509.

    Google Scholar 

  29. M. Pereira, B. Rybarczyk, T. Odrljin, D. Hocking, J. Sottile and P. Simpson-Haidaris, J. Cell Sci. 115 (2002) 609.

    Google Scholar 

  30. Z. Zhang, A. Morla, J. Vouri, J. Bauer, R. Juliano and E. Ruoslahti, J. Cell Biol. 12 (1993) 235.

    Google Scholar 

  31. R. Pankov, E. Cukierman, B. Katz, K. Matsumoto, D. Lin, S. Lin, C. Hahn and K. Yamada, ibid. 148 (2000) 1075.

    Google Scholar 

  32. T. Groth, G. Altankov, A. Kostadinova, N. Krasteva, W. Albrecht and D. Paul, J. Biomed. Mater. Res. 44 (1999) 341.

    Google Scholar 

  33. A. Garcia and D. Boettiger, Biomaterials 20 (1999) 2427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Groth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzoneva, R., Groth, T., Altankov, G. et al. Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability. Journal of Materials Science: Materials in Medicine 13, 1235–1244 (2002). https://doi.org/10.1023/A:1021131113711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021131113711

Keywords

Navigation