Skip to main content
Log in

The effect of new ferrite content on the tensile fracture behaviour of dual phase steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of new ferrite present with different volume fractions and morphologies of martensite on microvoids formation and tensile fracture behaviour in dual phase steels has been studied for a steel containing 0.065% C, 1.58% Mn and 0.5% Ni. Fine and coarse dual phase microstructures were obtained from two different starting conditions. Martensite contents were kept constant at ∼18 and ∼25% and new ferrite content was varied by controlled cooling from intercritical annealing temperature of 740, 750 and 785°C. In both fine and coarse dual phase structures microvoids formed at martensite particles, inclusions and martensite-ferrite interfaces in the necked region. Martensite morphology had an influence in determining martensite cracking. Coarse and interconnected martensite distributed along ferrite grain boundaries cracked easily. Martensite cracking was less frequent and the microvoids were smaller in the fine structure than the coarse ones. Microvoid coalescence was the dominant form of fracture in both structures. The specimens with higher new ferrite contents had higher densities of voids. In these samples, voids initiated mostly by decohesion at the interface, and by some examples of fracture of martensite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. DAVIES, in “Formable HSLA and Dual Phase Steels, ” edited by A. T. Davenport (AIME, New York, 1979) p. 25.

    Google Scholar 

  2. J. Y. KOO and G. THOMAS, in “Formable HSLA and Dual Phase Steels, ” edited by A. T. Davenport (AIME, New York, 1979) p. 40.

  3. R. D. LAWSON, D. K. MATLOCK and G. KRAUSS, in “Fundamentals of Dual Phase Steels, ” edited by R. A Kot and B. L. Bramfitt (AIME, New York, 1981) p. 347.

    Google Scholar 

  4. S. S. HANSEN and R. R. PRADHAN, in “Structure and Properties of Dual Phase Steels, ” edited by R. A. Kott and J. W. Morris (AIME, New York, 1979) p. 91.

    Google Scholar 

  5. R. G. DAVIES, Met. Trans. 9A (1978) 671.

    Google Scholar 

  6. Idem., ibid. 10A (1979) 1549.

  7. A. R. MARDER, in “Formable HSLA and Dual Phase Steels, ” edited by A. T. Davenport (AIME, New York, 1979) p. 87.

    Google Scholar 

  8. X. L. CAI, J. FENG and W. S. OWEN, Met. Trans. 11A (1980) 1683.

    Google Scholar 

  9. X. J. HE, N. TERAO and A. BERGHEZAN, J. Mater. Sci. 18 (1984) 367.

    Google Scholar 

  10. Y. TOMOTA, Mat. Sci and Tech. 3 (1987) 415.

    Google Scholar 

  11. M. ERDOGAN and S. TEKELI, in “International Conference on Advances in Materials and Processing Technologies, ” September 2001, edited by J. M Torralba, Leganes, Madrid, Spain, p. 117.

    Google Scholar 

  12. M. ERDOGAN, S. TEKELI, O. PAMUK and A. ERKAN, Mat. Sci. and Tech., in press.

  13. G. KRAUSS and A. R. MARDER, Met. Trans. 2A (1971) 2343.

    Google Scholar 

  14. T. JURUKUWA, H. MORIKAWA, H. TAKECHI and K. KOYAMA, in “Structure and Properties of Dual Phase Steels, ” edited by R. A. Kott and J. W. Morris (AIME, New York, 1979) p. 281.

    Google Scholar 

  15. G. S. HUPPI, D. K. MATLOCK and G. KRAUSS, Scrip. Metall 14 (1980) 1239.

    Google Scholar 

  16. M. ERDOGAN and R. PRIESTNER, Mat. Sci. and Tech. 15 (1999) 1273.

    Google Scholar 

  17. Idem., ibid. 18 (2002) 369.

  18. E. ROBERT and D. REED-HILL, in “Physical Metallurgy Principles” (Van Nostrand, New York, 1973).

    Google Scholar 

  19. M. COSTER and J. L. CHESMONT, Int. Met. Rev. 28 (1983) 228.

    Google Scholar 

  20. R. D. LAWSON, D. K. MATLOCK and G. KRAUSS, Metallography 13 (1980) 71.

    Google Scholar 

  21. B. D. CULLITY, in “Elements of X-Ray Diffraction” (MMA, Addison-Wesley, USA, 1978) p. 411.

    Google Scholar 

  22. L. STEINBRUNNER, D. K. MATLOCK and G. KRAUSS, Met. Trans. 19A (1988) 579.

    Google Scholar 

  23. S. RASHID, in “Formable HSLA and Dual Phase Steels, ” edited by A. T. Davenport (AIME, New York, 1979) p. 1.

    Google Scholar 

  24. G. THOMAS and Y. J. KOO, in “Fundamentals of Dual Phase Steels, ” edited by R. A. Kot and B. L. Bramfitt (AIME, New York, 1981) p. 183.

    Google Scholar 

  25. M. D. GEIB, D. K. MATLOCK and G. KRAUSS, Met. Trans. 11A (1980) 1683.

    Google Scholar 

  26. P. UGGOWITZER and H. P. STUWE, Mat. Sci. and Eng. 55 (1982) 181.

    Google Scholar 

  27. A. H. NAKAGAWA and G. THOMAS, Met. Trans. 16A (1985) 831.

    Google Scholar 

  28. M. SARWAR and R. PRIESTNER, J. Mater. Sci. 31 (1996) 2091.

    Google Scholar 

  29. E. AHMAD, T. MANZOROR, K. L. ALI and J. I. AKHAR, Mat. Eng. and Per. 9 (2000) 306.

    Google Scholar 

  30. G. R. SPEICH and R. L. MILLER, in “Structure and Properties of Dual Phase Steels, ” edited by R. A. Kott and J. W. Morris (AIME, New York, 1979) p. 145.

  31. N. K. BALLIGER, in “Advances in the Physical Metallurgy and Application of Steel” (The Metal Society, London, 1982) p. 73.

    Google Scholar 

  32. X. J. HE, N. TERAO and A. BERGHEZAN, J. Mater. Sci. 18 (1984) 367.

    Google Scholar 

  33. G. E. DIETER, in “Mechanical Metallurgy” (McGraw Hill Co., New York, 1986).

    Google Scholar 

  34. N. J. KIM and G. THOMAS, Met. Trans. 12A (1981) 483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdogan, M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. Journal of Materials Science 37, 3623–3630 (2002). https://doi.org/10.1023/A:1016548922555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016548922555

Keywords

Navigation