Skip to main content
Log in

AM1 and PM3 Study of Tautomerism of Hypoxanthine in the Gas and Aqueous Phases

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Heats of formation, entropies, Gibbs free energies, relative tautomerisation energies, tautomeric equilibrium constants, dipole moments, and ionization potentials for the eight possible tautomers of hypoxanthine have been studied using semiempirical AM1 and PM3 quantum-chemical calculations at the SCF level in the gas and aqueous phases, with full geometry optimization. The COSMO solvation model was employed for aqueous solution calculations. The calculations show that the two keto tautomers H17 and H19 are the predominant species at room temperature in the gas and aqueous phase. However, the tautomer H17 is the more dominant species in gas phase, while the H19 tautomer is the more dominant species in the aqueous phase. Comparison with available experimental data provides support for the results derived from theoretical computations. The entropy effect on the Gibbs free energy of hypoxanthine is very small and there is little significance for the tautomeric equilibria of the base. The enthalpic term is dominant in the determination of the equilibrium constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hurst, D. T. An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines; John Wiley, New York, 1980, 179–203.

    Google Scholar 

  2. Rundless, R. W.; Wyngaarden, J. B.; Hitchings, G. H.; Elion, G. B.; Silberman, H. P. Trans. Assoc. Amer. Phys. 1963, 76, 126.

    Google Scholar 

  3. Elion, G. B.; Callahan, S.; Hitchings, G. H.; Rundles, R. W.; Laszlo, J. Cancer Chemother. Rept. 1962, 16, 1971.

    Google Scholar 

  4. Scanlan, M. J.; Hillier, I. H. J. Amer. Chem. Soc. 1984, 106, 3837.

    Google Scholar 

  5. Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Kao-Lee, L.; LeBreton, P. R. J. Phys. Chem. 1980, 84, 1006.

    Google Scholar 

  6. Sheina, G. C.; Stepanian, S. G.; Radchenko, E. D.; Blagoi, Y. P. J. Mol. Struct. (Theochem.) 1987, 158, 275.

    Google Scholar 

  7. Benoit, R. L.; Frechette, M. Can. J. Chem. 1985, 63, 3053.

    Google Scholar 

  8. Medeiros, G. C.; Thomas, G. J. J. Biochim. Biophys. Acta 1971, 238.

  9. Lichtenberg, D.; Bergmann, F.; Neiman, Z. Isr. J. Chem. 1972, 10, 805.

    Google Scholar 

  10. Psoda, A.: Shugar, D. Biochim. Biophys. Acta 1971, 247, 507.

    Google Scholar 

  11. Chenon, M. T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.; Townsend, L. B.J. Amer. Chem. Soc. 1975, 97, 4636.

    Google Scholar 

  12. Schmalle, H. W.; Hanggi, G.; Dubler, E. Acta. Crystallogr. 1988, C44, 732.

    Google Scholar 

  13. Dubler, E.; Hanggi, G.; Schmalle, H. W. Inorg. Chem. 1990, 29, 2518.

    Google Scholar 

  14. Izatt, R. M.; Christensen, J. J.; Ryttine, J. H. Chem. Rev. 1971, 71, 439.

    Google Scholar 

  15. Tauler, R.; Cid, J. F.; Casassas, E. J. Inorg. Biochem. 1990, 39, 277.

    Google Scholar 

  16. Pullman, B.; Pullman, A. Advan. Heterocyclic Chem. 1971, 13, 77.

    Google Scholar 

  17. Hernandez, B.; Luque, F. J.; Orozco, M. J. Org. Chem. 1996, 61, 5964.

    Google Scholar 

  18. Kassimi, N. El-B.; Thakkar, A. J. J. Mol. Struct. (Theochem.) 1996, 366, 185.

    Google Scholar 

  19. Nonella, M.; Hanggi, G.; Dubler, E. J. Mol. Struct. (Theochem.) 1993, 279, 173.

    Google Scholar 

  20. Contreras, J. G.; Alderere, J. B. Mole. Eng. 1992, 2, 29.

    Google Scholar 

  21. Civcir, P. U. J. Mol. Struct. (Theochem.) 2000, 532, 157.

    Google Scholar 

  22. Civcir, P. U. J. Mol. Struct. (Theochem.) (Ref. THEOCH6808), in press.

  23. Civcir, P. U. J. Mol. Struvt. (Theochem.) Ref. THEOCH6850), in press.

  24. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Amer. Chem. Soc. 1985, 107, 366.

    Google Scholar 

  25. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.

    Google Scholar 

  26. Stewart, J. J. P., Mopac 7.0, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana.

  27. Klamt, A.; Schuurmann, G. J. Chem. Soc. Perkin Trans. 2 1993, 799.

    Google Scholar 

  28. Mezey, P. G.; Ladik, J. J. Theoret. Chim. Acta 1979, 52, 129.

    Google Scholar 

  29. Mezey, P. G.; Ladik, J. J.; Barry, M. Theoret. Chim. Acta 1980, 54, 251.

    Google Scholar 

  30. Beak, P. Accounts Chem. Res. 1977, 10, 186.

    Google Scholar 

  31. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Amer. Chem. Soc. 1985, 107, 3902.

    Google Scholar 

  32. Stewart, J. J. P. J. Comp. Chem. 1989, 10, 221.

    Google Scholar 

  33. Beak, P.; White, J. M. J. Amer. Chem. Soc. 1982, 104, 7073.

    Google Scholar 

  34. Richards, W. G. Quantum Pharmacology, Butterworths & Co., London, 1983.

    Google Scholar 

  35. Aaron, J. J.; Gaye, M. D.; Parkanyi, C.; Cho, N. S.; Szentpaly, L. V. J. Mol. Struct. (Theochem.) 1987, 156, 275.

    Google Scholar 

  36. Shaw, G. Comprehensive Heterocyclic Chemistry: The Structures, Reactions, Synthesis and Uses of Heterocyclic Compounds A. R. Katritzky; W. Rees, eds.; Pergamon Press: Oxford, 1984; Vol. 5, p. 499.

    Google Scholar 

  37. Kwiatkowksi, J. S. Theoret. Chim. Acta 1968, 11, 167.

    Google Scholar 

  38. Dewar, M. J. S.; Yamaguchi, Y.; Doraiswamy, S.; Sharma, S. D.; Suck, S. H. Chem. Phys. 1979, 41, 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civcir, P.Ü. AM1 and PM3 Study of Tautomerism of Hypoxanthine in the Gas and Aqueous Phases. Structural Chemistry 12, 15–21 (2001). https://doi.org/10.1023/A:1009253916904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009253916904

Navigation