Skip to main content
Log in

The Surface Science of Catalytic Selectivity

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalysis science research employing model systems (single crystal surfaces) focused on understanding and enhancing catalytic activity (turnover rate). The catalyst surface structure and the mobility of adsorbed species are key ingredients that control activity. Catalytic selectivity is the focus of research in the foreseeable future to develop environmentally benign chemical processes that approach 100% selectivity. The catalyst surface structure, selective site blocking, bifunctional catalysis, and oxide–metal interfaces have been recognized as some of the features of reaction selectivity. New two-dimensional model catalyst systems are being fabricated by electron beam and photolithographies for molecular studies of selectivity. New methods are employed to develop three-dimensional high surface area catalysts with precise control of metal particle size, surface structure, and location in the mezopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Joyner, B. Lang and G.A. Somorjai, Proc. R. Soc. London, Ser. A 331 (1972) 335.

    Google Scholar 

  2. J.M. Thomas, E.L. Evans and J.O. Williams, Proc. R. Soc. London, Ser. A 331 (1972) 417.

    Google Scholar 

  3. G.A. Somorjai and K.R. McCrea, Appl. Catal. A 222 (2001) 3.

    Google Scholar 

  4. S.M. Davis, F. Zaera and G.A. Somorjai, J. Catal. 77 (1982) 439.

    Google Scholar 

  5. S.M. Davis, F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 104 (1982) 7453.

    Google Scholar 

  6. N.O. Spencer, R.C. Schoonmaker and G.A. Somorjai, Nature 294 (1981) 643.

    Google Scholar 

  7. W.D. Gillespie, R.K. Herz, E.E. Petersen and G.A. Somorjai, J. Catal. 70 (1981) 147.

    Google Scholar 

  8. M. Salmeron, R.J. Gale and G.A. Somorjai, J. Chem. Phys. 67 (1977) 5324.

    Google Scholar 

  9. G.A. Somorjai, Acc. Chem. Res. 9 (1976) 248.

    Google Scholar 

  10. K. McCrea, J.S. Parker, P. Chen and G.A. Somorjai, Surf. Sci. 494 (2001) 238.

    Google Scholar 

  11. U. Starke, A. Barbieri, N. Materer and M.A. Van Hove, Surf. Sci. 286 (1993) 1.

    Google Scholar 

  12. K.S. Hwang, M. Yang, J. Zhu and J. Grunes, J. Mol. Catal. A (2003); Submitted.

  13. J. Grunes, J. Zhu, M. Yang and G.A. Somorjai, Catal. Lett. 86 (2003) 157.

    Google Scholar 

  14. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  15. P.S. Cremer and G.A. Somorjai, J. Chem. Soc., Faraday Trans. 91 (1995) 3671.

    Google Scholar 

  16. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  17. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, Catal. Lett. 40 (1996) 143.

    Google Scholar 

  18. I. Horiuti and M. Polanyi, Trans. Faraday Soc. 30 (1934) 1171.

    Google Scholar 

  19. G.A. Somorjai and Y.G. Borodko, Catal. Lett. 76 (2001) 1.

    Google Scholar 

  20. G.A. Somorjai, Catal. Lett. 76 (2001) 111.

    Google Scholar 

  21. G.A. Somorjai, Proceedings of the 8th International Congress on Catalysis, Vol. 1 (1984).

  22. J.W. Sachtler and G.A. Somorjai, J. Catal. 81 (1983) 77.

    Google Scholar 

  23. V.J. Frilette, P.B. Weisz and R.L. Golden, J. Catal. 1 (1962) 301.

    Google Scholar 

  24. D.J. Dwyer and G.A. Somorjai, J. Catal. 52 (1978) 291.

    Google Scholar 

  25. D. Dwyer and G.A. Somorjai, J. Catal. 56 (1979) 249.

    Google Scholar 

  26. A.B. Boffa, C. Lin, A.T. Bell and G.A. Somorjai, Catal. Lett. 27 (1994) 243.

    Google Scholar 

  27. A.S. Eppler, G. Rupprechter, A.B. Anderson and G.A. Somorjai, J. Phys. Chem. B 104 (2000) 7286.

    Google Scholar 

  28. M.X. Yang, D.H. Gracias, P.W. Jacobs and G.A. Somorjai, Langmuir 14 (1998) 1458.

    Google Scholar 

  29. G. Rupprechter, A.S. Eppler, G.A. Somorjai, Electron Microscopy 1998, in A New Model Catalyst Studied by HREM and AFM: Platinum Nanoparticle Arrays on Silica Fabricated by Electron Beam Lithography, H.A.C. Benavides, and M.J. Yacaman (eds), Vol. 2 (Institute of Physics, Bristol, Philadelphia, 1998) p. 369.

    Google Scholar 

  30. A. Avoyan, G. Rupprechter, A.S. Eppler and G.A. Somorjai, Top. Catal. 10 (2000) 107.

    Google Scholar 

  31. A.S. Eppler, J. Zhu and E.A. Anderson, Top. Catal. 13 (2000) 33.

    Google Scholar 

  32. G. Rupprechter, A.S. Eppler, A. Avoyan and G.A. Somorjai, Stud. Surf. Sci. Catal., A 130 (2000) 215.

    Google Scholar 

  33. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor and G.A. Somorjai, J. Phys. Chem. B 107 (2003) 3340.

    Google Scholar 

  34. Z. Konya, V.F. Puntes, I. Kiricsi, J. Zhu, J. AgerIII, M.K. Ko, H. Frei, P. Alivisatos and G.A. Somorjai, Chem. Mater. Submitted.

  35. Z. Konya, J. Zhu, A. Szegedi, I. Kiricsi, P. Alivisatos and G.A. Somorjai, Chem. Commun. (2003) 314.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somorjai, G., Yang, M. The Surface Science of Catalytic Selectivity. Topics in Catalysis 24, 61–72 (2003). https://doi.org/10.1023/B:TOCA.0000003077.98309.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000003077.98309.cf

Navigation