Skip to main content
Log in

Effects of Homology Length and Donor Vector Arrangement on the Efficiency of Double-Strand Break-Mediated Recombination in Human Cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

We use an Epstein-Barr virus (EBV) plasmid model chromosome system to study how different donor plasmid constructs affect recombination stimulated by an I-SceI-induced double-strand break in the target sequence in human cells. The entire 3.5 kb lacZ gene was efficiently recombined into a target EBV vector lacking lacZ sequences, but having limited homology to the donor plasmid. A donor plasmid with lacZ flanked by sequence homologous to the target consistently generated gene conversion events and was more effective than a donor carrying lacZ outside the same sequence homology. Reducing the length of homology between the target and donor from 5.5 kb to 1 kb caused only a 3-fold drop in recombination frequency, contrasting with the exponential dependence on homology length seen when no DSB is present in the target. These results document a DSB-induced 175-fold increase in recombination of a heterologous gene into a target, requiring only limited flanking homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  1. Donoho, G. P., M. Jasin, and P. Berg. (1998). Mol. Cell Biol. (1998). 18:4070–4078.

    Google Scholar 

  2. Choulika, A., Perrin, A., Dujon, B., and Nicolas, J. F. (1995). Mol. Cell. Biol. 15:1968–1973.

    Google Scholar 

  3. Cohen-Tannoudji, M., Robine, S., Choulika, A., Pinto, D., El Marjour, F., Babinet, C., Louvard, D., and Jaisser, F. (1998). Mol. Cell Biol. 18:1444–1448.

    Google Scholar 

  4. Rouet, P., F. Smih, and M. Jasin. (1994). Proc. Natl. Acad. Sci. U.S.A. 91:6064–6068.

    Google Scholar 

  5. Rouet, P., F. Smih, and M. Jasin. (1994). Mol. Cell. Biol. 14:8096–8106.

    Google Scholar 

  6. Smih, F., Rouet, P., Romanienko, P. J., and Jasin, M. (1995). Nucleic Acids Res. 23:5012–5019.

    Google Scholar 

  7. Deng, C. and M. R. Capecchi. (1992). Mol. Cell. Biol. 12:3365–3371.

    Google Scholar 

  8. Hasty, P., J. Rivera-Perez, and A. Bradley. (1991). Mol. Cell. Biol. 11:5586–5591.

    Google Scholar 

  9. Thomas, K. R. and M. R. Capecchi. (1987). Cell. 51:(503–512).

    Google Scholar 

  10. Ahn, B.-Y., Dornfeld, K. J., Fagrelius, T. J., and Livingston, D. M. (1988). Mol. Cell. Biol. 8:2442–2448.

    Google Scholar 

  11. Suguwara, N. and J. E. Haber. (1992). Mol. Cell. Biol. 12:563–575.

    Google Scholar 

  12. DuBridge, R. B. and M. P. Calos. (1988). Mutagenesis. 3:1–9.

    Google Scholar 

  13. Krysan, P. J. and M. P. Calos. (1991). Mol. Cell. Biol. 11:1464–1472.

    Google Scholar 

  14. Phillips, J. E., B. Thyagarajan, and M. P. Calos. (1999). Plasmid. 41:198–206.

    Google Scholar 

  15. Calos, M. P. (1996). TIGS. 12:463–466.

    Google Scholar 

  16. Yates, J., Warren, N., Reisman, D., and Sugden., B. (1984). Proc. Natl. Acad. Sci. U.S.A. 81:3806–3810.

    Google Scholar 

  17. Sugden, B., D. Marsh, and J. Yates. (1985). Mol. Cell. Biol. 5:410–413.

    Google Scholar 

  18. Haase, S. B. and M. P. Calos. (1991). Nucleic Acids Res. 19:5053–5058.

    Google Scholar 

  19. Krysan, P. J., S. B. Haase, and M. P. Calos. (1989). Mol. Cell. Biol. 9(No. 3):1026–1033.

    Google Scholar 

  20. Calos, M. P. (1998). Proc. Natl. Acad. Sci. USA. 95:4084–4085.

    Google Scholar 

  21. Belfort, M. and R. Roberts. (1997). Nucleic Acids Res. 25:3379–3388.

    Google Scholar 

  22. Colleaux, L., D'Auriol, L., Galibert, F., and Dujon, B. (1988). Proc. Natl. Acad. Sci. U.S.A. 85:6022–6026.

    Google Scholar 

  23. Phillips, G. J. (1999). Plasmid. 41:78–81.

    Google Scholar 

  24. Graham, F. L., Smiley, J., Russell, W. C., Nairn, R. (1977). J. Gen. Virol. 36:59–72.

    Google Scholar 

  25. Hirt, B. (1967). J. Mol. Biol. 26:365–369.

    Google Scholar 

  26. Rubnitz, J. and S. Subramani. (1985). Mol. Cell. Biol. 5:529–537.

    Google Scholar 

  27. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983). Cell. 33:25–

    Google Scholar 

  28. Elliot, B., Richardson, C., Winderbaum, J. A., and Jasin, M. (1998). Mol. Cell. Biol. 18:93–101.

    Google Scholar 

  29. Henikoff, S. (1998). Bioessays. 20:532–535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, J.E., Calos, M.P. Effects of Homology Length and Donor Vector Arrangement on the Efficiency of Double-Strand Break-Mediated Recombination in Human Cells. Somat Cell Mol Genet 25, 91–100 (1999). https://doi.org/10.1023/B:SCAM.0000007144.05961.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SCAM.0000007144.05961.2e

Keywords

Navigation