Skip to main content
Log in

Influence of Catecholamines on Migration and Differentiation of GnRH Neurons in Rats

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of α-methyl-para-tyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of α-methyl-para-tyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adamskaya, E.I., Kuznetsova, T.A., Shishkina, I.V., et al., Interrrelations of Regulatory Influences of Serotonin and Testosterone on Development of Luliberin-Producing System of Rat Brain during Prenatal Development, Ontogenez (Moscow), 1998, vol. 29,no. 1, pp. 47-51.

    Google Scholar 

  • Beauvillain, J.C. and Tramu, G., Immunocytochemical Demonstration of LHRH, Somatostatin, and ACTH-Like Peptide in Osmium-Postfixed, Resin-Embedded Median Eminence, J. Histochem. Cytochem., 1980, vol. 28,no. 9, pp. 1014-1017.

    Google Scholar 

  • Bernabe, J., Proshlyakova, E.V., Sapronova, A.Y., et al., Pharmacological Model of Catecholamine Depletion in the Hypothalamus of Fetal and Neonatal Rats and Its Application, Cell. Mol. Biol., 1996, vol. 16,no. 6, pp. 617-624.

    Google Scholar 

  • Bless, E.P., Westaway, W.A., Schwarting, G.A., and Tobet, S.A., Effects of Gamma-Aminobutyric Acid (A) Receptor Manipulation on Migrating Gonadotropin-Releasing Hormone Neurons Through the Entire Migratory Route in vivo and in vitro, Endocrinology, 2000, vol. 141,no. 3, pp. 1254-1262.

    Google Scholar 

  • Brezun, J.M. and Daszuta, A., Serotonin Depletion in the Adult Rat Produces Differential Changes in Highly Polysialylated Form of Neural Cell Adhesion Molecule and Tenascin-C Immunoreactivity, J. Neurosci. Res., 1999, vol. 55,no. 1, pp. 54-70.

    Google Scholar 

  • Caldani, M., Antoine, M., Batailler, M., and Duittoz, A., Ontogeny of GnRH System, J. Reprod. Fertil., 1995, vol. 49,Suppl., pp. 147-162.

    Google Scholar 

  • Cochard, P., Goldstein, M., and Black, I.B., Ontogenetic Appearance and Disappearance of Tyrosine Hydroxylase and Catecholamines in the Rat Embryo, Proc. Natl. Acad. Sci. USA, 1978, vol. 75,no. 6, pp. 2986-2990.

    Google Scholar 

  • Daikoku-Ishido, H., Okamura, Y., Yanaihara, N., and Daikoku, S., Development of the Hypothalamic Luteinising Hormone-Releasing Hormone-Containing Neuron System in the Rat: In vivo and Transplantation Studies, Dev. Biol., 1990, vol. 140,no. 2, pp. 347-387.

    Google Scholar 

  • Fueshko, S.M., Key, S., and Wray, S., GABA Inhibits Migration of Luteinizing Hormone-Releasing Hormone Neurons in Embryonic Olfactory Explants, J. Neurosci., 1998, vol. 18,no. 7, pp. 2560-2569.

    Google Scholar 

  • Gore, A.C., Roberts, J.I., and Gibson, M.J., Mechanisms for the Regulation of Gonadotropin-Releasing Hormone Gene Expression in the Developing Mouse, Endocrinology, 1999, vol. 140,no. 5, pp. 2280-2287.

    Google Scholar 

  • Heritier, A.G. and Dubois, P.M., Re-Evaluation of Gonadotropin-Releasing Hormone (GnRH) Action on Pituitary Cell Differentiation with Special Regard to Its Effect on LH and TSH Cell Types, J. Neuroendocrinol., 1994, vol. 6,no. 1, pp. 33-37.

    Google Scholar 

  • Héry, M., Francois-Bellan, A.M., Deprez, P., et al., Evidence for Presence of Noradrenalinergic Neurons and Their Inhibitory Action on Luteinizing Hormone Releasing Hormone Release in Cultured Fetal Rat Hypothalamic Cells, Life Sci., 1993, vol. 52,no. 25, pp. 2017-2025.

    Google Scholar 

  • Horgan, A.M. and Copenhaver, P.F., G-Protein-Mediated Inhibition of Neuronal Migration Requires Calcium Influx, J. Nerosci., 1998, vol. 18,no. 11, pp. 4189-4200.

    Google Scholar 

  • Horvath, T.L., Naftolin, F., and Leranth, C., Luteinizing Hormone-Releasing Hormone and Gamma-Aminobutyric Acid Neurons in the Medial Preoptic Area Are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas, J. Neuroendocrinol., 1993, vol. 5,no. 1, pp. 71-79.

    Google Scholar 

  • Hosny, S. and Jennes, L., Identification of Alpha 1B Adrenergic Receptor Protein in Gonadotropin Releasing Hormone Neurons of the Female Rat, Neuroendocrinology, 1998, vol. 10,no. 9, pp. 687-692.

    Google Scholar 

  • Jennes, L., Beckman, W.C., Stumpf, W.E., and Grzanna, R., Anatomical Relations of Serotoninergic and Noradrenalinergic Projections with the GnRH System in Septum and Hypothalamus, Exp. Brain. Res., 1982, vol. 46, pp. 331-338.

    Google Scholar 

  • Jennes, L., Stumpf, W.E., and Tappaz, M.L., Anatomical Relationships of Dopaminergic and GABAergic System with the GnRH-System in the Septo-Preoptic Area, Exp. Brain Res., 1983, vol. 50, pp. 90-91.

    Google Scholar 

  • Kalra, P.S. and Kalra, S.P., Neural Regulation of Luteinizing Hormone Secretion in the Rat, Endocrinol. Rev., 1983, vol. 4,no. 4, pp. 311-353.

    Google Scholar 

  • Kalra, S.P., Neural Circuits Involved in the Control of LHRH Secretion: a Model for Estrous Cycle Regulation, J. Steroid. Biochem., 1985, vol. 23,no. 5, pp. 733-742.

    Google Scholar 

  • Komuro, H. and Rakic, P., Intracellular Ca2+ Fluctuations Modulate the Rate of Neuronal Migration, Neuron, 1996, vol. 17,no. 2, pp. 275-285.

    Google Scholar 

  • Kusano, K., Fueshko, S.M., Gainer, H., and Wray, S., Electrical and Synaptic Properties of Embryonic Luteinizing Hormone Releasing Hormone Neurons in Explant Cultures, Proc. Natl. Acad. Sci. USA, 1995, vol. 92,no. 9, pp. 3918-3922.

    Google Scholar 

  • Lauder, J.M., Neurotransmitters as Growth Regulatory Signals: Role of Receptors and Second Messengers, Trends. Neurosci., 1993, vol. 16,no. 6, pp. 233-240.

    Google Scholar 

  • Lee, A., Talley, E., Rosin, D.L., and Lynch, K.R., Characterisation of α2-Adrenergic Receptors in the GT1 Neurosecretory Cells, Neuroendocrinology, 1995, vol. 62,no. 3, pp. 215-225.

    Google Scholar 

  • Leposavic, G., Dashwood, M.R., Ginsburg, J., and Buckingham, J.C., Peripubertal Changes in the Nature of the GnRH Response to Alpha-Adrenoreceptor Stimulation in vitro and Their Modulation by Testosterone, Neuroendocrinology, 1990, vol. 52,no. 1, pp. 82-89.

    Google Scholar 

  • Livne, I., Gibson, M.J., and Silverman, A.J., Biochemical Differentiation and Intercellular Interactions of Gonadotropin-Releasing Hormone (GnRH) Cells in the Mouse, Dev. Biol., 1993, vol. 159,no. 2, pp. 643-656.

    Google Scholar 

  • Markakis, E.A. and Swanson, L.W., Spatiotemporal Patterns of Secretomotor Neuron Generation in the Parvicellular Neuroendocrine System, Brain Res. Rev., 1997, vol. 19,no. 24(2–;3), pp. 255-291.

    Google Scholar 

  • Messenger, N.J., Rowe, S.J., and Warner, A.E., The Neurotransmitter Noradrenaline Drives Noggin-Expressing Ectoderm Cells to Activate N-Tubulin and Become Neurons, Dev. Biol., 1999, vol. 205,no. 2, pp. 224-232.

    Google Scholar 

  • Moguilevsky, J.A. and Wuttke, W., Changes in the Control of Gonadotrophin Secretion by Neurotransmitters during Sexual Development in Rats, Exp. Clin. Endocrinol. Diabetes, 2001, vol. 109,no. 4, pp. 188-195.

    Google Scholar 

  • Moore, J.P. and Wray, S., Luteinizing Hormone Releasing Hormone (LHRH) Biosynthesis and Secretion in Embryonic LHRH, Endocrinology, 2000, vol. 141,no. 12, pp. 4486-4495.

    Google Scholar 

  • Nagatsu, I., Komori, K., Takeuchi, T., et al., Transient Tyrosine Hydroxylase-Immunoreactive Neurons in the Region of the Anterior Olfactory Nucleus of Pre-and Postnatal Mice Do Not Contain Dopamine, Brain Res., 1990, vol. 511,no. 1, pp. 55-62.

    Google Scholar 

  • Pabbathi, V.K., Brennan, H., Muxworthy, A., et al., Cathecholaminergic Regulation of Proliferation and Survival in Rat Forebrain Paraventricular Germinal Zone Cells, Brain Res., 1997, vol. 760,nos. 1–;2, pp. 22-33.

    Google Scholar 

  • Pronina, T.S., Ugrumov, M.V., Kalas, A., et al., Effects of Serotonion on Development of LHRH System in Fetuses of Wistar Rats, Zh. Evol. Biokhim. Fziol., 2001, vol. 37,no. 5, pp. 426-431.

    Google Scholar 

  • Ronnekleiv, O.K. and Resko, J.A., Ontogeny of Gonadotropin-Releasing Hormone-Containing Neurones in Early Foetal Development of Rhesus Macaques, Endocrinology, 1990, vol. 126,no. 1, pp. 498-511.

    Google Scholar 

  • Schwanzel-Fukuda, M. and Pfaff, D.W., Origin of Luteinizing Hormone-Releasing Hormone Neurons, Nature (London), 1989, vol. 338,no. 6211, pp. 161-164.

    Google Scholar 

  • Simonian, S.X. and Herbison, A.E., Regulation of Gonadotropine-Releasing Hormone (GnRH) Gene Expression during GnRH Neuron Migration in the Mouse, Neuroendocrinology, 2001, vol. 73,no. 3, pp. 149-156.

    Google Scholar 

  • Smolen, A.J., Image Analytic Techniques for Quantification of Immunohistochemical Staining in the Nervous System, Methods in Neuroscience. Quantitative and Qualitative Microscopy, Conn, P.M., Ed., San Diego: Academic, 1990, pp. 208-229.

    Google Scholar 

  • Specht, L.A., Pickel, V.M., Joh, T.H., and Reis, D.J., Light-Microscopic Immunocytochemical Localization of Tyrosine Hydroxylase in Prenatal Rat Brain. 1. Early Ontogeny, J. Comp. Neurol., 1981, vol. 20,no. 2, pp. 233-253.

    Google Scholar 

  • Tarozzo, G., Andrea, M., Feuilloley, M., et al., Molecular and Cellular Guidance of Neuronal Migration in the Developing Olfactory System of Rodents, Ann. N. Y. Acad. Sci., 1998, vol. 15,no. 839, pp. 196-200.

    Google Scholar 

  • Thomas, S.A., Matsumoto, A.M., and Palmiter, R.D., Noradrenaline Is Essential for Mouse Fetal Development, Nature (London), 1995, vol. 13,no. 374(6523), pp. 643-646.

    Google Scholar 

  • Tobet, S.A., Chickering, T.W., King, J.C., et al., Expression of Gamma-Aminobutyric Acid and Gonadotropine Releasing Hormone during Neuronal Migration Through the Olfactory System, Endocrinology, 1996, vol. 137,no. 12, pp. 5415-5420.

    Google Scholar 

  • Verney, S., El Amraoui, A., and Zecevic, N., Comigration of Tyrosine Hydroxylase and Gonadotropine-Releasing Hormone-Immunoreactive Neurons in the Nasal Area of Human Embryos, Devel. Brain Res., 1996, vol. 97,no. 2, pp. 251-259.

    Google Scholar 

  • Wang, R., and Limbird, L.E., Distribution of MRNA Encoding Three Alpha 2-Adrenergic Receptor Subtypes in the Developing Mouse Embryo Suggests a Role for the Alpha 2A Subtype in Apoptosis, Mol. Pharmacol., 1997, vol. 52,no. 6, pp. 1071-1080.

    Google Scholar 

  • Wray, S., Grant, P., and Gainer, H., Evidence That Cells Expressing Luteinizing Hormone-Releasing Hormone mRNA in the Mouse Are Derived from Progenitor Cells in the Olfactory Placode, Proc. Natl. Acad. Sci. USA, 1989, vol. 86,no. 20, pp. 8132-8136.

    Google Scholar 

  • Wray, S., Key, S., Qualls, R., and Fueshko, S.M., Subset of Peripherin Positive Olfactory Axons Delineates the Luteinizing Hormone Releasing Hormone Neuronal Migratory Pathway in Developing Mouse, Dev. Biol., 1994, vol. 166,no. 1, pp. 349-354.

    Google Scholar 

  • Wray, S., Fueshko, S.M., Kusano, K., and Gainer, H., GABAergic Neurons in the Embryonic Olfactory Pit/Vomeronasal Organ: Maintenance of Functional GABAergic Synapses in Olfactory Explants, Devel. Biol., 1996, vol. 180,no. 2, pp. 631-645.

    Google Scholar 

  • Yoshida, K., Tobet, S.A., Crandall, J.E., et al., The Migration of Luteinizing Hormone-Releasing Hormone Neurons in the Developing Rat Is Associated with a Transient, Caudal Projection of the Vomeronasal Nerve, J. Neurosci., 1995, vol. 15,no. 12, pp. 7769-7777.

    Google Scholar 

  • Yoshida, K., Rutishauser, U., Crandall, J.E., and Schwarting, G.A., Polysialic Acid Facilitates Migration of Luteinizing Hormone-Releasing Hormone Neurons on Vomeronasal Axons, J. Neurosci., 1999, vol. 15,no. 2, pp. 794-801.

    Google Scholar 

  • Zheng, L.M., Pfaff, D.W., and Schwanzel-Fukuda, M., Electron Microscopic Identification of Luteinizing Hormone-Releasing Hormone-Immunoreactive Neurons in the Medial Olfactory Placode and Basal Forebrain of Embryonic Mice, Neuroscience (Oxford), 1992, vol. 46,no. 2, pp. 407-418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izvol'skaya, M.S., Voronova, S.N., Makarenko, I.G. et al. Influence of Catecholamines on Migration and Differentiation of GnRH Neurons in Rats. Russian Journal of Developmental Biology 35, 16–24 (2004). https://doi.org/10.1023/B:RUDO.0000015120.17357.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUDO.0000015120.17357.42

Navigation