Skip to main content
Log in

Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Glucosinolates are a group of defense-related secondary metabolites found in Arabidopsis and other cruciferous plants. Levels of leaf glucosinolates are regulated during plant development and increase in response to mechanical damage or insect feeding. The Arabidopsis TU8 mutant has a developmentally altered leaf glucosinolate profile: aliphatic glucosinolate levels drop off more rapidly, consistent with the early senescence of the mutant, and the levels of two indole glucosinolates are uniformly low. In TU8 seeds, four long-chain aliphatic glucosinolates have significantly increased levels, whereas the indolyl-3-methyl glucosinolate level is significantly reduced relative to wild type. Genetic mapping and DNA sequencing identified the TU8 mutation as tfl2-6, a new allele of TERMINAL FLOWER2(TFL2), the only Arabidopsis homolog of animal HETEROCHROMATIN PROTEIN1(HP1). TU8(tfl2-6) has other previously identified tfl2 phenotypes, including an early transition to flowering, altered meristem structure, and stunted leaves. Analysis of two additional alleles, tfl2-1 and tfl2-2, showed glucosinolate profiles similar to those of line TU8 (tfl2-6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, S. and Feyereisen, R. 2001. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 127: 108-118.

    PubMed  Google Scholar 

  • Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111.

    PubMed  Google Scholar 

  • Bones, A.M. and Rossiter, J.T. 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant. 97: 194-208.

    Google Scholar 

  • Brown, P.D., Tokuhisa, J.G., Reichelt, M. and Gershenzon, J. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62: 471-481.

    PubMed  Google Scholar 

  • Brudenell, A.J.P., Griffths, H. and Baker, D.A. 1999. The phloem mobility of glucosinolates. J. Exp. Bot. 50: 745-756.

    Google Scholar 

  • Campos, H., Magrath, R., McCallum, D., Kroyman, J., Schnabelrauch, D., Mitchell-Olds, T. and Mithen, R. 2000. Alpha-keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor. Appl. Genet. 101: 429-437.

    Google Scholar 

  • Chen, S., Petersen, B.L., Olsen, C.E., Schulz, A. and Halkier, B.A. 2001. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 127: 194-201.

    PubMed  Google Scholar 

  • Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C.E., Hansen, C.H., Rasmussen, H., Pickett, J.A. and Halkier, B.A. 2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33: 923-937.

    PubMed  Google Scholar 

  • Eissenberg, J.C. and Elgin, S.C. 2000. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10: 204-210.

    PubMed  Google Scholar 

  • Gaudin, V., Libault, M., Pouteau, S., Juul, T., Zhao, G., Lefebvre, D. and Grandjean, O. 2001. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128: 4847-4858.

    PubMed  Google Scholar 

  • Giamoustaris, A. and Mithen, R. 1995. The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126: 347-363.

    Google Scholar 

  • Hansen, C.H., Du, L., Naur, P., Olsen, C.E., Axelsen, K.B., Hick, A.J., Pickett, J.A. and Halkier, B.A. 2001. CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276: 24790-24796.

    PubMed  Google Scholar 

  • Haughn, G.W., Davin, L., Giblin, M. and Underhill, E.W. 1991. Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The glucosinolates. Plant Physiol. 97: 217-226.

    Google Scholar 

  • Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. 1988. HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography-mass spectrometry. J. Chromatogr. Sci. 26: 551-556.

    Google Scholar 

  • Hull, A.K., Vij, R. and Celenza, J.L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophandependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA 97: 2379-2384.

    PubMed  Google Scholar 

  • Husebye, H., Chadchawan, S., Winge, P., Thangstad, O.P. and Bones, A.M. 2002. Guard cell-and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol. 128: 1180-1188.

    PubMed  Google Scholar 

  • Jander, G., Baerson, S.R., Hudak, J.A., Gonzalez, K.A., Gruys, K.J. and Last, R.L. 2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol. 131: 139-146.

    PubMed  Google Scholar 

  • Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. and Last, R.L. 2002. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450.

    PubMed  Google Scholar 

  • Jones, D.O., Cowell, I.G. and Singh, P.B. 2000. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioaessays 22: 124-37.

    Google Scholar 

  • King, J.J., Stimart, D.P., Fisher, R.H. and Bleecker, A.B. 1995. A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7: 2023-2037.

    PubMed  Google Scholar 

  • Kliebenstein, D.J., Figuth, A. and Mitchell-Olds, T. 2002. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161: 1685-1696.

    PubMed  Google Scholar 

  • Kliebenstein, D.J., Gershenzon, J. and Mitchell-Olds, T. 2001a. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159: 359-370.

    PubMed  Google Scholar 

  • Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. 2001b. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126: 811-825.

    PubMed  Google Scholar 

  • Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. 2001c. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 681-693.

    PubMed  Google Scholar 

  • Koroleva, O.A., Davies, A., Deeken, R., Thorpe, M.R., Tomos, A.D. and Hedrich, R. 2000. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 124: 599-608.

    Article  PubMed  Google Scholar 

  • Kotake, T., Takada, S., Nakahigashi, K., Ohto, M. and Goto, K. 2003. Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol. 44: 555-564.

    PubMed  Google Scholar 

  • Kreig, D. 1963. Ethyl methanesulfonate-induced reversion of bacteriophage T4r II mutants. Genetics 48: 561-580.

    PubMed  Google Scholar 

  • Kroymann, J., Textor, S., Tokuhisa, J.G., Falk, K.L., Bartram, S., Gershenzon, J. and Mitchell-Olds, T. 2001. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 127: 1077-1088.

    PubMed  Google Scholar 

  • Larsson, A.S., Landberg, K. and Meeks-Wagner, D.R. 1998. The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana. Genetics 149: 597-605.

    PubMed  Google Scholar 

  • Ljung, K., Hull, A.K., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J.D. and Sandberg, G. 2002. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50: 309-332.

    PubMed  Google Scholar 

  • Ludwig-Müller, J., Krishna, P. and Forreiter, C. 2000. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol. 123: 949-958.

    PubMed  Google Scholar 

  • Ludwig-Müller, J., Pieper, K., Ruppel, M., Cohen, J.D., Epstein, E., Kiddle, G. and Bennett, R. 1999. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 208: 409-419.

    PubMed  Google Scholar 

  • Macgrath, R. and Mithen, R. 1993. Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breeding 111: 249-252.

    Google Scholar 

  • Mikkelsen, M.D., Hansen, C.H., Wittstock, U. and Halkier, B.A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712-33717.

    PubMed  Google Scholar 

  • Mikkelsen, M.D., Petersen, B.L., Glawischnig, E., Jensen, A.B., Andreasson, E. and Halkier, B.A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298-308.

    PubMed  Google Scholar 

  • Müller, C., Agerbirk, N., Olsen, C.E., Boeve, J.L., Schaffner, U. and Brakefield, P.M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27: 2505-2516.

    PubMed  Google Scholar 

  • Paro, R. and Hogness, D.S. 1991. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88: 263-267.

    PubMed  Google Scholar 

  • Petersen, B.L., Chen, S., Hansen, C.H., Olsen, C.E. and Halkier, B.A. 2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214: 562-571.

    PubMed  Google Scholar 

  • Pivnick, K.A., Jarvis, B.J. and Slater, G.P. 1994. Identification of olfactory cues used in host-plant finding by diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Chem. Ecol. 20: 1407-1426.

    Google Scholar 

  • Raybould, A.F. and Moyes, C.L. 2001. The ecological genetics of aliphatic glucosinolates. Heredity 87: 383-391.

    PubMed  Google Scholar 

  • Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T. and Gershenzon, J. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663-671.

    PubMed  Google Scholar 

  • Smart, L.E., Blight, M.M. and Hick, A.J. 1997. Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceutorhynchus assimilis. J. Biol. Ecol. 23: 889-902.

    Google Scholar 

  • Takada, S. and Goto, K. 2003. TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15: 2856-2865.

    PubMed  Google Scholar 

  • Till, B.J., Reynolds, S.H., Greene, E.A., Codomo, C.A., Enns, L.C., Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E., Heniko., J.G., Comai, L. and Heniko., S. 2003. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13: 524-530.

    PubMed  Google Scholar 

  • Weigel, D. and Glazebrook, J. 2002. Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Wittstock, U. and Halkier, B.A. 2000. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem. 275: 14659-14666.

    PubMed  Google Scholar 

  • Wittstock, U. and Halkier, B.A. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7: 263-270.

    PubMed  Google Scholar 

  • Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D. and Chory, J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306-309.

    PubMed  Google Scholar 

  • Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J. and Celenza, J.L. 2002. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16: 3100-3112.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Durrett, T.P., Last, R.L. et al. Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2 . Plant Mol Biol 54, 671–682 (2004). https://doi.org/10.1023/B:PLAN.0000040897.49151.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000040897.49151.98

Navigation