Skip to main content
Log in

Rapid Characterization of Amyloid-β Side-Chain Oxidation by Tandem Mass Spectrometry and the Scoring Algorithm for Spectral Analysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Amyloid-β (Aβ) is a self-aggregating protein found in senile plaques in Alzheimer's disease (AD) brain and is thought to play a major role in the disease process. Oxidative stress may be a predominant cause of the formation of these Aβ aggregates. This study aims at identifying possible sites of copper-catalyzed oxidation of Aβ1-40 using liquid chromatography tandem mass spectrometry (LC/MS/MS) and scoring algorithm for spectral analysis (SALSA). Traditionally, identification of post-translational modifications by tandem mass spectrometric analysis requires users to inspect manually thousands of MS/MS spectra, which can be a tedious and time-consuming process. With the use of SALSA, users can automatically search for post-translational modifications based on the spacing of the m/z values associated with the ion series of an amino acid sequence.

Methods. Aβ1-40 was subjected to copper-catalyzed oxidative stress. LC/MS/MS and SALSA analyses were used to determine the sites of post-translational modification within the tryptic fragments.

Results. Oxidation was found to occur preferentially at the histidine residues His13 and His14 and at the methionine residue (Met35) of Aβ1-40.

Conclusions. The combination of LC/MS/MS and SALSA searches could dramatically improve the efficiency and accuracy of determining the specific sites of oxidation of in vitro, copper-oxidized Aβ1-40 as well as other oxidized proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hardy and D. J. Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353-356 (2002).

    Google Scholar 

  2. T. Wisniewski, J. Ghiso, and B. Frangione. Biology of A beta amyloid in Alzheimer's disease. Neurobiol. Dis. 4:313-328 (1997).

    Google Scholar 

  3. C. Soto, M. C. Branes, J. Alvarez, and N. C. Inestrosa. Structural determinants of the Alzheimer's amyloid beta-peptide. J. Neurochem. 63:1191-1198 (1994).

    Google Scholar 

  4. F. Prelli, E. Castano, G. G. Glenner, and B. Frangione. Differences between vascular and plaque core amyloid in Alzheimer's disease. J. Neurochem. 51:648-651 (1988).

    Google Scholar 

  5. Y. Christen. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71:621S-629S (2000).

    Google Scholar 

  6. W. R. Markesbery. Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23:134-147 (1997).

    Google Scholar 

  7. M. A. Smith, C. A. Rottkamp, A. Nunomura, A. K. Raina, and G. Perry. Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta 1502:139-144 (2000).

    Google Scholar 

  8. M. Y. Aksenov, M. V. Aksenova, D. A. Butterfield, J. W. Geddes, and W. R. Markesbery. Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103:373-383 (2001).

    Google Scholar 

  9. D. A. Butterfield, A. Castegna, and C. M. Lauderback. and J. Drake. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol. Aging 23:655-664 (2002).

    Google Scholar 

  10. J. T. Coyle and P. Puttfarcken. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689-695 (1993).

    Google Scholar 

  11. C. W. Olanow. A radical hypothesis for neurodegeneration. Trends Neurosci. 16:439-444 (1993).

    Google Scholar 

  12. D. Dexter, C. Carter, F. Agid, Y. Agid, A. J. Lees, P. Jenner, and C. D. Marsden. Lipid peroxidation as cause of nigral cell death in Parkinson's disease. Lancet 2:639-640 (1986).

    Google Scholar 

  13. D. T. Dexter, C. J. Carter, F. R. Wells, F. Javoy-Agid, Y. Agid, A. Lees, P. Jenner, and C. D. Marsden. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52:381-389 (1989).

    Google Scholar 

  14. B. S. Mandavilli, J. H. Santos, and B. Van Houten. Mitochondrial DNA repair and aging. Mutat. Res. 509:127-151 (2002).

    Google Scholar 

  15. R. Kohen and A. Nyska. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30:620-650 (2002).

    Google Scholar 

  16. M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158:47-52 (1998).

    Google Scholar 

  17. X. Huang, C. S. Atwood, M. A. Hartshorn, G. Multhaup, L. E. Goldstein, R. C. Scarpa, M. P. Cuajungco, D. N. Gray, J. Lim, R. D. Moir, R. E. Tanzi, and A. I. Bush. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609-7616 (1999).

    Google Scholar 

  18. X. Huang, M. P. Cuajungco, C. S. Atwood, M. A. Hartshorn, J. D. Tyndall, G. R. Hanson, K. C. Stokes, M. Leopold, G. Multhaup, L. E. Goldstein, R. C. Scarpa, A. J. Saunders, J. Lim, R. D. Moir, C. Glabe, E. F. Bowden, C. L. Masters, D. P. Fairlie, R. E. Tanzi, and A. I. Bush. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J.Biol. Chem. 274:37111-37116 (1999).

    Google Scholar 

  19. C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, N. M. Bacarra, D. M. Romano, M. A. Hartshorn, R. E. Tanzi, and A. I. Bush. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273:12817-12826 (1998).

    Google Scholar 

  20. C. M. Yates, J. Butterworth, M. C. Tennant, and A. Gordon. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J. Neurochem. 55:1624-1630 (1990).

    Google Scholar 

  21. C. Schoneich and T. D. Williams. Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His13 and His14 over His6: Detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15:717-722 (2002).

    Google Scholar 

  22. J. Lim and R. W. Vachet. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Anal. Chem. 75:1164-1172 (2003).

    Google Scholar 

  23. D. C. Liebler, B. T. Hansen, S. W. Davey, L. Tiscareno, and D. E. Mason. Peptide sequence motif analysis of tandem MS data with the SALSA algorithm. Anal. Chem. 74:203-210 (2002).

    Google Scholar 

  24. B. T. Hansen, J. A. Jones, D. E. Mason, and D. C. Liebler. SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. Anal. Chem. 73:1676-1683 (2001).

    Google Scholar 

  25. D. Burdick, B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman, and C. Glabe. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J. Biol. Chem. 267:546-554 (1992).

    Google Scholar 

  26. E. Shacter. Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 32:307-326 (2000).

    Google Scholar 

  27. J. Peng and S. P. Gygi. Proteomics: the move to mixtures. J. Mass Spectrom. 36:1083-1091 (2001).

    Google Scholar 

  28. W. Vogt. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18:93-105 (1995).

    Google Scholar 

  29. A. Ducret and O. Van, I, J. K. Eng, J. R. Yates, III, and R. Aebersold. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci. 7:706-719 (1998).

    Google Scholar 

  30. J. R. Yates Iii. Database searching using mass spectrometry data. Electrophoresis 19:893-900 (1998).

    Google Scholar 

  31. D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin J. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiewe, A.J., Margol, L., Soreghan, B.A. et al. Rapid Characterization of Amyloid-β Side-Chain Oxidation by Tandem Mass Spectrometry and the Scoring Algorithm for Spectral Analysis. Pharm Res 21, 1094–1102 (2004). https://doi.org/10.1023/B:PHAM.0000032994.36343.02

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000032994.36343.02

Navigation