Skip to main content
Log in

Structural Aspects of Plant Ferredoxin : NADP+ Oxidoreductases

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ferredoxin reductase (FNR) is ubiquitous among photosynthetic organisms as the enzyme directly responsible for the generation of NADPH. Structural studies over the last 15 years have generated over 30 crystal structures of wild-type and mutant FNRs that have yielded a great deal of insight into its structure–function relations. These insights are summarized and combined to propose a structurally informed cycle for FNR catalysis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliverti A, Bruns CM, Pandini VE, Karplus PA, Vanoni MA, Curti B and Zanetti G (1995) Involvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase: structure-function relationship as studied by site-directed mutagenesis and X-ray crystallography. Biochemistry 34: 8371–8379

    Article  PubMed  CAS  Google Scholar 

  • Aliverti A, Deng Z, Ravasi D, Piubelli L, Karplus PA and Zanetti G (1998) Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase. J Biol Chem 273: 34008–34015

    Article  PubMed  CAS  Google Scholar 

  • Aliverti, A, Faber R, Finnerty CM, Ferioli C, Pandini V, Negri A, Karplus PA and Zanetti G (2001) Biochemical and crystallographic characterization of ferredoxin-NADP(+) reductase from non-photosynthetic tissues. Biochemistry 40: 14501–14508

    Article  PubMed  CAS  Google Scholar 

  • Arakaki AK, Ceccarelli EA and Carrillo N (1997) Plant-type ferredoxin-NADP+ reductases: a basal structural framework and a multiplicity of functions. FASEB J 11: 133–140

    PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K and Keeling PJ (2003) Lateral gene transfer and the evolution of plastidtargeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100: 7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Avron M and Jagendorf AT (1956) A TPNH diaphorase from chloroplasts. Arch Biochem Biophys 65: 475–490

    Article  PubMed  CAS  Google Scholar 

  • Backhausen JE, Kitzman C, Horton P and Scheibe R (2000) Electron acceptors in isolated spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Batie CJ and Kamin H (1984a) Electron transfer by ferredoxin: NADP+ reductase. Rapid-reaction evidence for participation of a ternary complex. J Biol Chem 259: 11976–11985

    PubMed  CAS  Google Scholar 

  • Batie CJ and Kamin H (1984b). Ferredoxin: NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J Biol Chem 259: 8832–8839

    PubMed  CAS  Google Scholar 

  • Batie CJ and Kamin H (1986) Association of ferredoxin-NADP+ reductase with NADP(H) specificity and oxidationreduction properties. J Biol Chem 261: 11214–11223

    PubMed  CAS  Google Scholar 

  • Bewley MC, Davis CA, Marohnic CC, Taormina D and Barber MJ (2003) The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site. Biochemistry 42: 13145–13151

    Article  PubMed  CAS  Google Scholar 

  • Bewley MC, Marohnic CC and Barber MJ (2001) The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent. Biochemistry 40: 13574–13582

    Article  PubMed  CAS  Google Scholar 

  • Bruns CM and Karplus PA (1994) Refined crystal structures of native, complexed and reduced forms of spinach ferredoxin reductase. In Yagi K (ed) Flavins and Flavoproteins, pp 443–446. Walter de Gruyter, Berlin

    Google Scholar 

  • Bruns CM and Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 20-phospho-50-AMP bound states. J Mol Biol 247: 125–145

    Article  PubMed  CAS  Google Scholar 

  • Carrillo N and Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270: 1900–1915

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli EA, Arakaki AK, Cortez N and Carrillo N (2004). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim Biophys Acta 1698 (2): 155–165

    PubMed  CAS  Google Scholar 

  • Choi G, Przybylska M and Straus D (1996) Three abundant germ line-specific transcripts in Volvox carteri encode photosynthetic proteins. Curr Genet 30: 347–355

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Batie CJ, Ballou DP and Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258: 1604–1610

    PubMed  CAS  Google Scholar 

  • Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N and Karplus PA (1999) A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol 6: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Dorowski A, Hofmann A, Steegborn C, Boicu M and Huber R (2001) Crystal structure of paprika ferredoxin-NADP+ reductase Implications for the electron transfer pathway. J Biol Chem 276: 9253–9263

    Article  PubMed  CAS  Google Scholar 

  • Faro M, Frago S, Mayoral T, Hermoso JA, Sanz-Aparicio J, Gomez-Moreno C and Medina M (2002) Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates. Eur J Biochem 269: 4938–4947

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) University of Washington, Seattle, Washington

    Google Scholar 

  • Foust GP, Mayhew SG and Massey V (1969) Complex formation between ferredoxin triphosphopyridine nucleotide reductase and electron transfer proteins. J Biol Chem 244: 964–970

    PubMed  CAS  Google Scholar 

  • Gomez-Moreno C, Martinez-Julvez M, Fillat MF, Hurley JK and Tollin G (1996) Molecular recognition in protein complexes involved in electron transfer. Biochem Soc Trans 24: 111–116

    PubMed  CAS  Google Scholar 

  • Gruez A, Pignol D, Zeghouf M, Coves J, Fontecave M, Ferrer JL and Fontecilla-Camps, JC (2000) Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. J Mol Biol 299: 199–212

    Article  PubMed  CAS  Google Scholar 

  • Hanke GT, Kurisu G, Kusunoki M and Hase T (2004) Fd: FNR electron transfer complexes: evolutionary refinement of structural interactions. Photosynth Res 81: 317–327 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Helmchen TA, Bhattacharya D and Melkonian M (1995). Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J Mol Evol 41: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Hermoso JA, Mayoral T, Faro M, Gomez-Moreno C, Sanz-Aparicio J and Medina M (2002) Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. J Mol Biol 319: 1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Hubbard PA, Shen AL, Paschke R, Kasper CB and Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem 276: 29163–29170

    Article  PubMed  CAS  Google Scholar 

  • Hurley JK, Morales R, Martinez-Julvez M, Brodie TB, Medina M, Gomez-Moreno C and Tollin G (2002) Structure-function relationships in Anabaena ferredoxin/ferredoxin: NADP(+) reductase electron transfer: insights from site-directed mutagenesis, transient absorption spectroscopy and X-ray crystallography. Biochim Biophys Acta 1554: 5–21

    Article  PubMed  CAS  Google Scholar 

  • Ingelman M, Bianchi V and Eklund H (1997) The threedimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J Mol Biol 268: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Ingelman M, Ramaswamy S, Niviere V, Fontecave M and Eklund H (1999) Crystal structure of NAD(P)H: flavin oxidoreductase from Escherichia coli. Biochemistry 38: 7040–7049

    Article  PubMed  CAS  Google Scholar 

  • Jakowitsch J, Bayer MG, Maier TL, Luttke A, Gebhart UB, Brandtner M, Hamilton B, Neumann-Spallart C, Michalowski CB, Bohnert, HJ and (1993) Sequence analysis of preferredoxin-NADP(+)-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleus-encoded cyanelle polypeptide. Plant Mol Biol 21: 1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Karlsson A, Beharry ZM, Matthew Eby D, Coulter ED, Neidle EL, Kurtz Jr DM Eklund H and Ramaswamy S (2002) X-ray crystal structure of benzoate 1,2-dioxygenase reductase from Acinetobacter sp. strain ADP1. J Mol Biol 318: 261–272

    Article  PubMed  CAS  Google Scholar 

  • Karplus PA and Bruns CM (1994) Structure-function relations for ferredoxin reductase. J Bioenerg Biomembr 26: 89–99

    Article  PubMed  CAS  Google Scholar 

  • Karplus PA and Schulz GE (1989) Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 Å resolution. J Mol Biol 210: 163–180

    Article  PubMed  CAS  Google Scholar 

  • Karplus PA, Daniels MJ and Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66

    PubMed  CAS  Google Scholar 

  • Karplus PA, Walsh KA and Herriott JR (1984). Amino acid sequence of spinach ferredoxin: NADP+ oxidoreductase. Biochemistry 23: 6576–6583

    Article  PubMed  CAS  Google Scholar 

  • Keister DL, San Pietro A and Stolzenbach FE (1960). Pyridine nucleotide transhydrogenase from spinach. I. Purification and properties. J Biol Chem 235: 2989–2996

    PubMed  CAS  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y and Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 8: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Lindqvist Y, Schneider G, Dwivedi U and Campbell W (1995). Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. J Mol Biol 248: 931–948

    Article  PubMed  Google Scholar 

  • Martinez-Julvez M, Hermoso J, Hurley JK, Mayoral T, Sanz-Aparicio J, Tollin G, Gomez-Moreno C and Medina M (1998a) Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer. Biochemistry 37: 17680–17691

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Julvez M, Medina M, Hurley JK, Hafezi R, Brodie TB, Tollin G and Gomez-Moreno C (1998b) Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer. Biochemistry 37: 13604–13613

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Julvez M, Nogues I, Faro M, Hurley JK, Brodie TB, Mayoral T, Sanz-Aparicio J, Hermoso JA, Stankovich MT, Medina M, (2001) Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron transfer to ferredoxin. J Biol Chem 276: 27498–27510

    Article  PubMed  CAS  Google Scholar 

  • Mayoral T, Medina M, Sanz-Aparicio J, Gomez-Moreno C and Hermoso JA (2000) Structural basis of the catalytic role of GIu301 in Anabaena PCC 7119 ferredoxin-NADP+ reductase revealed by X-ray crystallography. Proteins 38: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Luquita A, Tejero J, Hermoso J, Mayoral T, Sanz-Aparicio J, Grever K and Gomez-Moreno C (2001) Probing the determinants of coenzyme specificity in ferredoxin-NADP+ reductase by site-directed mutagenesis. J Biol Chem 276: 11902–11912

    Article  PubMed  CAS  Google Scholar 

  • Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C and Frey M (2000) A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep 1: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids (supplement). DNA Res 10: 181–201

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Inaka K, Yamanaka M, Kaida S, Kobayashi K and Miki K (1995) Crystal structure of NADH-cytochrome b5 reductase from pig liver at: 2.4 A resolution. Biochemistry 34: 2763–2767

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL and Krogmann DW (1965). Studies on pyridine nucleotides in photosynthetic tissue. Concentrations, interconversions, and distribution. J Biol Chem 240: 4603–4608

    PubMed  CAS  Google Scholar 

  • Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA and Zanetti G (2000) Competition between Cterminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. J Biol Chem 275: 10472–10476

    Article  PubMed  CAS  Google Scholar 

  • Prasad GS, Kresge N, Muhlberg AB, Shaw A, Jung YS, Burgess BK and Stout CD (1998). The crystal structure of NADPH: ferredoxin reductase from Azotobacter vinelandii. Protein Sci 7: 2541–2549

    Article  CAS  Google Scholar 

  • Serre L, Vellieux F, Medina M, Gomez-Moreno C, Fontecilla-Camps JC and Frey M (1996a). Crystal structures of a ferredoxin:NADP+ reductase and of a complex with NADP+. Biochem Soc Trans 24: 10S

    PubMed  CAS  Google Scholar 

  • Serre L, Vellieux FM, Medina M, Gomez-Moreno C, Fontecilla-Camps JC and Frey M (1996b) X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. J Mol Biol 263: 20–39

    Article  PubMed  CAS  Google Scholar 

  • Shin M, Tagawa K and Arnon DI (1963) Crystallization of ferredoxin-Tpn reductase and its role in the photosynthetic apparatus of chloroplasts. Biochem Z 338: 84–96

    PubMed  CAS  Google Scholar 

  • Tejero J, Martinez-Julvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gomez-Moreno C and Medina M (2003) Involvement of the pyrophosphate and the 20-phosphate binding regions of ferredoxin-NADP+ reductase in coenzyme specificity. J Biol Chem 278: 49203–49214

    Article  PubMed  CAS  Google Scholar 

  • Vollmer M, Thomsen N, Wiek S and Seeber F (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276: 5483–5490

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Roberts DL, Paschke R, Shea TM, Masters BS and Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN-and FADcontaining enzymes. Proc Natl Acad Sci USA 94: 8411–8416

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T and Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122: 887–894

    Article  PubMed  CAS  Google Scholar 

  • Zanetti G, Cidaria D and Curti B (1982) Preparation of apoprotein from spinach ferredoxin-NADP+ reductase. Studies on the resolution process and characterization of the FAD reconstituted holoenzyme. Eur J Biochem 126: 453–458

    Article  PubMed  CAS  Google Scholar 

  • Zanetti G and Forti G (1966) Studies on the triphosphopyridine nucleotide-cytochrome f reductase of chloroplasts. J Biol Chem 241: 279–285

    PubMed  CAS  Google Scholar 

  • Zhang J, Martasek P, Paschke R, Shea T, Siler Masters BS and Kim JJ (2001) Crystal structure of the FAD/NADPHbinding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase. J Biol Chem 276: 37506–37513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Andrew Karplus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karplus, P.A., Faber, H.R. Structural Aspects of Plant Ferredoxin : NADP+ Oxidoreductases. Photosynthesis Research 81, 303–315 (2004). https://doi.org/10.1023/B:PRES.0000036884.57303.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000036884.57303.2e

Navigation