Skip to main content
Log in

Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Peroxidases are heavily implicated in plant cell wall cross-linking reactions, altering the properties of the wall and impacting its utilization. Polysaccharide-polysaccharide cross-linking in grasses is achieved by dehydrodimerization of hydroxycinnamate-polysaccharide esters; a complex array of hydroxycinnamic acid dehydrodimers are released by saponification. Ferulates are the major cross-linking agents, but sinapate-ferulate cross-products have been discovered implicating sinapates in a similar role. New dehydrodimers have been authenticated, expanding our knowledge of the chemistry, role, and extent of cross-linking reactions. Ferulate dehydrotrimers have been discovered; whether these trimers truly cross-link three independent polysaccharide chains or only two remains to be determined. Hydroxycinnamates and their dehydrodimers also undergo radical coupling reactions with lignin monomers and possibly oligomers, resulting in lignin-polysaccharide cross-linking in the wall. Both polysaccharide-polysaccharide and lignin-polysaccharide cross-links inhibit the enzymatic hydrolysis of cell walls. The cross-linking process has particular relevance to plant physiology, human and animal nutrition and health, and food technology.

Abbreviations: CW – cell wall; DFA – dehydrodiferulic acid (or dehydrodiferulate in context); DSA – dehydrodisinapic acid; TFA – dehydrotriferulic acid; SA – sinapic acid (1 S); TA – thomasidioic acid (5C3 SS); IDF – insoluble dietary fiber; SDF – soluble dietary fiber; GC-MS – gas chromatography-mass spectrometry; NMR – nuclear magnetic resonance (spectroscopy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allerdings E, Ralph J, Schatz P, Gniechwitz D, Steinhart H & Bunzel M (2004) Isolation and structural identification of diarabinosyl 8-O-4-dehydrodiferulate from maize bran insoluble fibre. Phytochem.: submitted.

  • Andreasen MF, Kroon PA, Williamson G & Garcia-Conesa MT (2001a) Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radical Biol. Med. 31(3): 304–314.

    Google Scholar 

  • Andreasen MF, Kroon PA, Williamson G & Garcia-Conesa M-T (2001b) Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J. Agric. Food Chem. 49: 5679–5684.

    Google Scholar 

  • Aoyagi T, Hosoya S & Nakano J (1975) New reaction site in lignins during the oxygen-alkali treatment. Mokuzai Gakkaishi 21(9): 532–534.

    Google Scholar 

  • Bolwell GP (1988) Synthesis of cell wall components: aspects of control. Phytochem. 27(5): 1235–1253.

    Google Scholar 

  • Bolwell GP (1993) Dynamic aspects of the plant extracellular matrix. Int. Rev. Cytol 146: 261–324.

    Google Scholar 

  • Brett CT, Wende G, Smith AC & Waldron KW (1999) Biosynthesis of cell-wall ferulate and diferulates. J. Sci. Food Agric. 79(3): 421–424.

    Google Scholar 

  • Bunzel M, Funk C & Steinhart H (2004a) Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran. J. Sep. Sci. 27: in press. DOI: 10.1002/jssc.200301703.

  • Bunzel M, Ralph J, Marita JM & Steinhart H (2000) Identification of 4-O-5-coupled diferulic acid from insoluble cereal fiber. J. Agric. Food Chem. 48(8): 3166–3169.

    Google Scholar 

  • Bunzel M, Ralph J, Funk C & Steinhart H (2003a) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur. Food Res. Technol. 217(2): 128–133.

    Google Scholar 

  • Bunzel M, Ralph J, Marita JM, Hatfield RD & Steinhart H (2001) Diferulates as structural components in soluble and insoluble dietary fibre. J. Sci. Food Agric. 81(7): 653–660.

    Google Scholar 

  • Bunzel M, Allerdings E, Sinwell V, Ralph J & Steinhart H (2002) Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fibre. Eur. Food Res. Technol. 214(6): 482–488.

    Google Scholar 

  • Bunzel M, Ralph J, Kim H, Hatfield RD & Steinhart H (2004b) Are cereal grains lignified? J. Agric. Food Chem.: in press.

  • Bunzel M, Ralph J, Kim H, Lu F, Ralph SA, Marita JM, Hatfield RD & Steinhart H (2003b) Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. J. Agric. Food Chem. 51(5): 1427–1434.

    Google Scholar 

  • Carnachan SM & Harris PJ (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem. Systematics and Ecol. 28: 865–879.

    Google Scholar 

  • Charlton JL & Lee KA (1997) Thomasidioic acid and 6-hydroxy-5,7-dimethoxy-2-naphthoic acid: Are they really natural products? Tetrahedron Lett. 38(42): 7311–7312.

    Google Scholar 

  • Chioccara F, Poli S, Rindone B, Pilati T, Brunow G, Pietikainen P & Setala H (1993) Regio-and diastereoselective synthesis of dimeric lignans using oxidative coupling. Acta Chem. Scand. 47(6): 610–616.

    Google Scholar 

  • Donaldson LA (1994) Mechanical constraints on lignin deposition during lignification. Wood Sci. Technol. 28(2): 111–118.

    Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry-an ultrastructural view. Phytochem. 57(6): 859–873.

    Google Scholar 

  • Ede RM & Kilpeläinen I (1995) Homo-and hetero-nuclear 2D NMR techniques: unambiguous structural probes for non-cyclic benzyl aryl ethers in soluble lignin samples. Res. Chem. Intermediates 21(3–5): 313–328.

    Google Scholar 

  • Faulds CB & Williamson G (1992) Ferulic acid release from plant polysaccharides by specific esterases. Prog. Biotechnol. 7: 419–422.

    Google Scholar 

  • Faulds CB & Williamson G (1999) The role of hydroxycinnamates in the plant cell wall. J. Sci. Food Agric. 79(3): 393–395.

    Google Scholar 

  • Ferguson LR & Harris PJ (2003) The dietary fibre debate: more food for thought. Lancet 361: 1487–1488.

    Google Scholar 

  • Ford CW & Hartley RD (1989) GC/MS characterization of cyclodimers from p-coumaric and ferulic acids by photodimerization-a possible factor influencing cell wall biodegradability. J. Sci. Food Agric. 46(3): 301–310.

    Google Scholar 

  • Freudenberg K & Schraube H (1955) Synthese des Syringaresinols und Versuche mit Sinapinalkohol. Chem. Ber. 88(1): 16–23.

    Google Scholar 

  • Fry SC & Miller JC (1989) Toward a Working Model of the Growing Plant Cell Wall. Phenolic Cross-linking reactions in the primary cell walls of dicotyledons. In: Lewis NG & Paice MG, <nt >(ed) </nt >, Plant Cell Wall Polymers, Biogenesis and Biodegradation, Vol 399, Amer. Chem. Soc. Symp. Ser. (pp. 33–46). Amer. Chem. Soc., Washington, DC.

    Google Scholar 

  • Fry SC, Willis SC & Paterson AEJ (2000) Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211(5): 679–692.

    Google Scholar 

  • Funk C, Ralph J, Steinhart H & Bunzel M (2004) Isolation and structural characterisation of 8-O-4/8-O-4-and 8-O–4/8–8-coupled dehydrotriferulic acids from maize bran. Phytochem.: submitted.

  • Garcia-Conesa MT, Plumb GW, Waldron KW, Ralph J & Williamson G (1997a) Ferulic acid dehydrodimers from wheat bran: isolation, purification and antioxidant properties of 8-O-4-diferulic acid. Redox Rep. 3(5–6): 319–323.

    Google Scholar 

  • Garcia-Conesa MT, Plumb GW, Kroon PA, Wallace G & Williamson G (1997b) Antioxidant properties of ferulic acid dimers. Redox Rep. 3(4): 239–244.

    Google Scholar 

  • Garcia-Conesa MT, Wilson PD, Plumb GW, Ralph J & Williamson G (1999a) Antioxidant properties of 4,4 ′-dihydroxy-.94 3,3 ′-dimethoxy-?,? ′-bicinnamic acid (8–8-diferulate non-cyclic form). J. Sci. Food Agric. 79(3): 379–384.

    Google Scholar 

  • Garcia-Conesa MT, Kroon P, Ralph J, Mellon FA, Colquhoun IJ, Saulnier L, Thibault J-F & Williamson G (1999b) A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids. European J. Biochem. 266(2): 644–652.

    Google Scholar 

  • Grabber JH (2004) How do lignin composition, structure, and cross-linking impact degradability? A review of cell wall model studies. Crop Sci. 44: in press.

  • Grabber JH, Hatfield RD & Ralph J (1998a) Diferulate cross-links impede the enzymatic degradation of nonlignified maize walls. J. Sci. Food Agric. 77(2): 193–200.

    Google Scholar 

  • Grabber JH, Ralph J & Hatfield RD (1998b) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J. Agric. Food Chem. 46(7): 2609–2614.

    Google Scholar 

  • Grabber JH, Ralph J & Hatfield RD (1998c) Modeling lignification in grasses with monolignol dehydropolymerisate-cell wall complexes. In: Lewis NG & Sarkanen S, <nt >(ed) </nt >, Lignin and Lignan Biosynthesis, Vol 697, Amer. Chem. Soc. Symp. Ser. (pp. 163–171). American Chemical Society, Washington, DC.

    Google Scholar 

  • Grabber JH, Ralph J & Hatfield RD (2000) Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J. Agric. Food Chem. 48(12): 6106–6113.

    Google Scholar 

  • Grabber JH, Ralph J & Hatfield RD (2002) Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. J. Agric. Food Chem. 50(21): 6008–6016.

    Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J, Zon J & Amrhein N (1995) Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochem. 40(4): 1077–1082.

    Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD, Quideau S, Kuster T & Pell AN (1996) Dehydrogenation polymer-cell wall complexes as a model for lignified grass walls. J. Agric. Food Chem. 44(6): 1453–1459.

    Google Scholar 

  • Harkin JM (1967) Lignin-a natural polymeric product of phenol oxidation. In: Taylor WI & Battersby AR, <nt >(ed) </nt >, Oxidative Coupling of Phenols, (pp. 243–321). Marcel Dekker, New York.

    Google Scholar 

  • Hartley RD & Ford CW (1989) Phenolic constituents in plant cell walls and wall biodegradability. In: Lewis NG & Paice MG, <nt >(ed) </nt >, Plant Cell Wall Polymers, Biogenesis and Biodegradation, Vol 399, Amer. Chem. Soc. Symp. Ser. (pp. 137–145). Amer. Chem. Soc., Washington, DC.

    Google Scholar 

  • Hartley RD, Morrison WH, III, Balza F & Towers GHN (1990a) Substituted truxillic and truxinic acids in cell walls of Cynodon dactylon. Phytochem. 29(12): 3699–3703.

    Google Scholar 

  • Hartley RD, Morrison WH, III, Himmelsbach DS & Borneman WS (1990b) Cross-linking of cell wall phenolic arabinoxylans in graminaceous plants. Phytochem. 29(12): 3705–3709.

    Google Scholar 

  • Hatfield RD & Ralph J (1999) Modeling the feasibility of intramolecular dehydrodiferulate formation in grass walls. J. Sci. Food Agric. 79(3): 425–427.

    Google Scholar 

  • Hatfield RD, Grabber J & Ralph J (1997) A potential role of sinapyl p-coumarate in grass lignin formation. In: Proceedings of the Annual Meeting of the American Society of Plant Physiologists. Vol Plant Physiol. 114 (pp. 346). Vancouver, British Columbia. American Soc. Plant Physiologists.

    Google Scholar 

  • Hatfield RD, Ralph J & Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric. 79(3): 403–407.

    Google Scholar 

  • Iiyama K, Lam TBT & Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochem. 29(3): 733–737.

    Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr. Res. 219: 15–22.

    Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci. 127(2): 111–127.

    Google Scholar 

  • Jacquet G, Pollet B, Lapierre C, Mhamdi F & Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J. Agric. Food Chem. 43(10): 2746–2751.

    Google Scholar 

  • Jung HG & Ralph J (1990) Phenolic-carbohydrate complex in plant cell walls and their effect on lignocellulose utilization. In: Akin DE, Ljungdahl LG, Wilson JR & Harris PJ, <nt >(ed) </nt >, Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, (pp. 173–182). Elsevier, New York.

    Google Scholar 

  • Jung HG, Buxton DR, Hatfield RD & Ralph J <nt >(ed) </nt > (1993) Forage Cell Wall Structure and Digestibility. Am. Soc. Agronomy, Crop Sci. Soc. Am., Soil Soc. Am., Madison.

    Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G & Kilpeläinen I (1995a) The formation of dibenzodioxocin structures by oxidative coupling. A model reaction for lignin biosynthesis. Tetrahedron Lett. 36(25): 4501–4504.

    Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G & Kilpeläinen I (1995b) Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett. 36(1): 169–170.

    Google Scholar 

  • Kern SM, Bennet RN, Needs PW, Mellon FA, Kroon PA & Garcia-Conesa MT (2003) Characterization of metabolites of hydroxyl-cinnamates in the in vitro model of human small intestinal epithelium Caco-2 cells. J. Agric. Food Chem. 51: 7884–7891.

    Google Scholar 

  • Kroon PA (2000) What role for feruloyl esterases today? Polyphénols Actualités 19: 4–5.

    Google Scholar 

  • Kroon PA & Williamson G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J. Sci. Food Agric. 79(3): 355–361.

    Google Scholar 

  • Kroon PA, Garcia-Conesa MT, Fillingham IJ, Hazlewood GP & Williamson G (1999) Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J. Sci. Food Agric. 79(3): 428–434.

    Google Scholar 

  • Lam TBT, Iiyama K & Stone BA (1992) Changes in phenolic acids from internode walls of wheat and Phalaris during maturation. Phytochem. 31(8): 2655–2658.

    Google Scholar 

  • Lam TBT, Kadoya K & Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls. Phytochem. 57(6): 987–992.

    Google Scholar 

  • Levigne S, Ralet M-C & Thibault J-F (2002) Characterisation of pectins from fresh sugar beet under different conditions using an experimental design. Carbohydr. Polym. 49: 145–153.

    Google Scholar 

  • Lu F & Ralph J (2002) Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf. J. Chem. Soc., Chem. Commun. (1): 90–91.

    Google Scholar 

  • Lundquist K & Miksche GE (1965) Nachweis eines neuen Verknüpfungsprinzips von Guajacylpropaneinheiten im Fichtenlignin. Tetrahedron Lett. (25): 2131–2136.

    Google Scholar 

  • MacAdam JW & Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215(5): 785–793.

    Google Scholar 

  • Marita JM, Ralph J, Lapierre C, Jouanin L & Boerjan W (2001) NMR characterization of lignins from transgenic poplars with suppressed caffeic acid O-methyltransferase activity. J. Chem. Soc., Perkin Trans. 1 (22): 2939–2945.

    Google Scholar 

  • Micard V, Renard CMGC & Thibault JF (1997a) Influence of pre-treatments on enzymic degradation of a cellulose-rich residue from sugar-beet pulp. Food Sci. Technol. 30: 284–291.

    Google Scholar 

  • Micard V, Grabber JH, Ralph J, Renard CMGC & Thibault J-F (1997b) Dehydrodiferulic acids from sugar-beet pulp. Phytochem. 44(7): 1365–1368.

    Google Scholar 

  • Monties BL (1989) Lignins. In: Harborne J, <nt >(ed) </nt >, Methods in Plant Biochemistry, Vol 1 (pp. 113–157). Academic Press, London.

    Google Scholar 

  • Mueller-Harvey I, Hartley RD, Harris PJ & Curzon EH (1986) Linkage of p-coumaryl and feruloyl groups to cell wall polysaccharides of barley straw. Carbohydr. Res. 148: 71–85.

    Google Scholar 

  • Oosterveld A, Beldman G & Voragen AGJ (2000) Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydr. Res. 328(2): 199–207.

    Google Scholar 

  • Oosterveld A, Grabber JH, Beldman G, Ralph J & Voragen AGJ (1997) Formation of ferulic acid dehydrodimers through oxidative cross-linking of sugar beet pectin. Carbohydr. Res. 300(2): 179–181.

    Google Scholar 

  • Parker CC, Parker ML, Smith AC & Waldron KW (2003) Thermal stability of texture in Chinese water chestnut may be dependent on 8,8 ′-diferulic acid (aryltetralyn form). J. Agric. Food Chem. 51: 2034–2039.

    Google Scholar 

  • Parker ML & Waldron KW (1995) Texture of Chinese water chestnut-involvement of cell-wall phenolics. J. Sci. Food Agric. 68(3): 337–346.

    Google Scholar 

  • Parr AJ, Waldron KW, Ng A & Parker ML (1996) The wall-bound phenolics of Chinese water chestnut. J. Sci. Food Agric. 71: 501–507.

    Google Scholar 

  • Quideau S & Ralph J (1997) Lignin-ferulate cross-links in grasses. Part 4. Incorporation of 5–5-coupled diferulate into lignin. J. Chem. Soc., Perkin Trans. 1 (16): 2351–2358.

    Google Scholar 

  • Ralet M-C, Faulds CB, Williamson G & Thibault J-F (1994a) De-gradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydr. Res. 263: 257–269.

    Google Scholar 

  • Ralet M-C, Thibault J-F, Faulds CB & Williamson G (1994b) Isolation and purification of feruloylated oligosaccharides from cell walls of sugar-beet pulp. Carbohydr. Res. 263: 227–241.

    Google Scholar 

  • Ralph J & Helm RF (1993) Lignin/hydroxycinnamic acid/polysaccharide complexes: Synthetic models for regiochemical characterization. In: Jung HG, Buxton DR, Hatfield RD & Ralph J, <nt >(ed) </nt >, Forage Cell Wall Structure and Digestibility, (pp. 201–246). ASA-CSSA-SSSA, Madison, WI.

    Google Scholar 

  • Ralph J, Grabber JH & Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr. Res. 275(1): 167–178.

    Google Scholar 

  • Ralph J, Garcia-Conesa MT & Williamson G (1998a) Simple preparation of 8–5-coupled diferulate. J. Ag. Food Chem. 46(7): 2531–2532.

    Google Scholar 

  • Ralph J, Helm RF, Quideau S & Hatfield RD (1992) Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. J. Chem. Soc., Perkin Trans. 1 (21): 2961–2969.

    Google Scholar 

  • Ralph J, Quideau S, Grabber JH & Hatfield RD (1994a) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J. Chem. Soc., Perkin Trans. 1 (23): 3485–3498.

    Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH & Jung H-JG (1994b) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Amer. Chem. Soc. 116(21): 9448–9456.

    Google Scholar 

  • Ralph J, Hatfield RD, Grabber JH, Jung HG, Quideau S & Helm RF (1998b) Cell wall cross-linking in grasses by ferulates and diferulates. In: Lewis NG & Sarkanen S, <nt >(ed) </nt >, Lignin and Lignan Biosynthesis, Vol 697, Amer. Chem. Soc. Symp. Ser. (pp. 209–236). American Chemical Society, Washington, DC.

    Google Scholar 

  • Ralph J, Lapierre C, Lu F, Marita JM, Pilate G, Van Doorsselaere J, Boerjan W & Jouanin L (2001a) NMR evidence for benzodioxane structures resulting from incorporation of 5-hydroxyconiferyl alcohol into lignins of O-methyl-transferase-deficient poplars. J. Agric. Food Chem. 49(1): 86–91.

    Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Grabber JH, Ralph SA, Jimenez-Monteon G & Steinhart H (2000) Diferulates analysis: new diferulates and disinapates in insoluble cereal fibre. Polyphénols Actualités (19): 13–17.

    Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH & Boerjan W (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Reviews: 3: 29–60.

    Google Scholar 

  • Ralph J, Lapierre C, Marita J, Kim H, Lu F, Hatfield RD, Ralph SA, Chapple C, Franke R, Hemm MR, Van Doorsselaere J, Sederoff RR, O'Malley DM, Scott JT, MacKay JJ, Yahiaoui N, Boudet A-M, Pean M, Pilate G, Jouanin L & Boerjan W(2001b) Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochem. 57(6): 993–1003.

    Google Scholar 

  • Rombouts FM & Thibault JF (1986) Feruloylated pectic substances from sugar-beet pulp. Carbohydr. Res. 154: 177–187.

    Google Scholar 

  • Rouau X, Bertin C & Thibault JF (1987) Characterization and enzymic degradation of sugar beet fiber. Food Hydrocolloids 1(5–6): 439–443.

    Google Scholar 

  • Rouau X, Cheynier V, Surget A, Gloux D, Barron C, Meuded E, Louis-Montero J & Criton M (2003) A dehydrodimer of ferulic acid from maize bran. Phytochem. 63: 899–903.

    Google Scholar 

  • Rubino MI, Arntfield SD & Charlton JL (1995) Conversion of phenolics to lignans: Sinapic acid to thomasidioic acid. J. Amer. Oil Chem. Soc. 72(12): 1465–1470.

    Google Scholar 

  • Rubino MI, Arntfield SD & Charlton JL (1996) Evaluation of alkaline conversion of sinapic acid to thomasidioic acid. J. Agric. Food Chem. 44(6): 1399–1402.

    Google Scholar 

  • Sánchez M, Peña MJ, Revilla G & Zarra I (1996) Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster Hypocotyl. Plant Physiol. 111: 941–946.

    Google Scholar 

  • Sarkanen KV & Ludwig CH (1971) Lignins, Occurrence, Formation, Structure and Reactions. Wiley-Interscience, New York.

    Google Scholar 

  • Saulnier L & Thibault J-F (1999) Ferulic acid and diferulic acid as components of sugar-beet pectins and maize heteroxylans. J Sci. Food Agric. 79: 396–402.

    Google Scholar 

  • Saulnier L, Crepeau MJ, Lahaye M, Thibault JF, Garcia-Conesa MT, Kroon PA & Williamson G (1999) Isolation and structural de-termination of two 5,5 ′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr. Res. 320(1–2): 82–92.

    Google Scholar 

  • Scalbert A, Monties B, Rolando C & Sierra-Escudero A (1986) Formation of ether linkage between phenolic acids and Gramineae lignin: a possible mechanism involving quinone methides. Holzforschung 40(3): 191–195.

    Google Scholar 

  • Setälä H, Pajunen A, Rummakko P, Sipilä J & Brunow G (1999) A novel type of spiro compound formed by oxidative cross-coupling of methyl sinapate with a syringyl lignin model compound. A model system for the ?-1 pathway in lignin biosynthesis. J. Chem. Soc., Perkin Trans. 1 (4): 461–464.

    Google Scholar 

  • Shimada M, Fukuzuka T & Higuchi T (1971) Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi 54(1): 72–78.

    Google Scholar 

  • Stewart D, Robertson GW & Morrison IM (1994) Phenolic acid dimers in the cell walls of barley. Biol. Mass Spec. 23: 71–74.

    Google Scholar 

  • Syrjanen K & Brunow G (1998) Oxidative cross coupling of p-hydroxycinnamic alcohols with dimeric arylglycerol ?-aryl ether lignin model compounds. The effect of oxidation potentials. J. Chem. Soc. Perkin Trans. 1 (20): 3425–3429.

    Google Scholar 

  • Syrjanen K & Brunow G (2000) Regioselectivity in lignin biosynthesis. The influence of dimerization and cross-coupling. J. Chem. Soc. Perkin Trans. 1 (2): 183–187.

    Google Scholar 

  • Takahama U & Oniki T (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol. 35(4): 593–600.

    Google Scholar 

  • Takahama U, Oniki T & Shimokawa H (1996) A Possible Mechanism for the Oxidation of Sinapyl Alcohol by Peroxidase-Dependent Reactions in the Apoplast: Enhancement of the Oxidation by Hydroxycinnamic Acids and Components of the Apoplast. Plant Cell Physiol. 37(4): 499–504.

    Google Scholar 

  • Tanahashi M, Takeuchi H & Higuchi T (1976) Dehydrogenative polymerization of 3,5-disubstituted p-coumaryl alcohols. Wood Res. 61: 44–53.

    Google Scholar 

  • Terashima N, Awano T, Takabe K & Yoshida M(2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by electron microscopy. Comptes Rend. Biologies 327(6): in press.

  • Teutonico RA, Dudley MW, Orr JD, Lynn DG & Binns AN (1991) Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol. 97(1): 288–297.

    Google Scholar 

  • van Huystee RB & Zheng X (1993) Cationic peanut peroxidase and the oxidation of ferulic acid. Phytochem. 34(4): 933–939.

    Google Scholar 

  • Waldron KW, Parr AJ, Ng A & Ralph J (1996) Cell-wall-esterified phenolic monomers and dimers: identification and quantification by reverse-phase HPLC and diode-array detection. Phytochem. Anal. 7(6): 305–312.

    Google Scholar 

  • Wallace G & Fry SC (1995) In vitro peroxidase-catalyzed oxidation of ferulic acid esters. Phytochem. 39(6): 1293–1299.

    Google Scholar 

  • Wallis AFA (1973) Oxidative dimerization of methyl (E)-sinapate. Aust. J. Chem. 26: 1571–1576.

    Google Scholar 

  • Yamamoto E, Bokelman GH & Lewis NG (1989) Phenylpropanoid metabolism in cell walls. An overview. In: Lewis NG & Paice MG, <nt >(ed) </nt >, Plant Cell Wall Polymers. Biogenesis and Biodegradation, Vol 399, Amer. Chem. Soc. Symp. Ser. (pp. 68–88). Amer. Chem. Soc., Washington, DC.

    Google Scholar 

  • Yang J-G & Uchiyama T (2000a) Hydroxycinnamic acids and their dimers involved in the cessation of cell elongation in Mentha suspension culture. Biosci. Biotechnol. Biochem. 64(8): 1572–1579.

    Google Scholar 

  • Yang J-G & Uchiyama T (2000b) Dehydrodimers of caffeic acid in the cell walls of suspension-cultured Mentha. Biosci. Biotechnol. Biochem. 64(4): 862–864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralph, J., Bunzel, M., Marita, J.M. et al. Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemistry Reviews 3, 79–96 (2004). https://doi.org/10.1023/B:PHYT.0000047811.13837.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000047811.13837.fb

Navigation