Skip to main content
Log in

Identification of Stabilized Dynorphin Derivatives for Suppressing Tolerance in Morphine-Dependent Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Modulatory actions on morphine-induced effects, such as tolerance and withdrawal, have been noted for dynorphin A(1-13) [Dyn A(1-13)] and similar peptides. These are currently of limited therapeutic potential due to extensive metabolism by human metabolic enzymes resulting in a half-life of less than 1 min in human plasma. The purpose of this study was to identify stabilized dynorphin A (Dyn A) derivatives, to determine their metabolic routes in human plasma, and to assess whether the pharmacodynamic activity is retained.

Methods. The stability of peptides in human plasma was tested using in vitro metabolism studies with and without enzyme inhibitors. Identification of the generated metabolites was performed by mass spectrometry after high performance liquid chromatography (HPLC) separation. The in vivo activity of a stabilized dynorphin was tested by tail-flick assay in morphine-tolerant rats.

Results. Though amidation of the Dyn A(1-13) was able to stop the majority of C-terminal degradation, metabolism of Dyn A(1-10) amide continued by captopril sensitive enzymes, suggesting that Dyn A(1-13) amide is a better candidate for additional stabilization. Two Dyn A(1-13) amide derivatives further stabilized at the N-terminal end, [D-Tyr1]-Dyn A(1-13) amide and [N-Met-Tyr1]-Dyn A(1-13) amide, showed half-lives in plasma of 70 and 130 min, respectively. The most stable derivative [N-Met-Tyr1]-Dyn A(1-13) amide was tested successfully for retention of the pharmacological activity in modulating antinociceptive activity.

Conclusions. [N-Met-Tyr1]-Dyn A(1-13) amide showed significant stability and antinociceptive activity in the tail-flick test, thus pointing to the clinical potential of this derivative in the management of pain as well as its potential activity in suppressing opiate tolerance and withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. F. Powell, H. Grey, F. Gaeta, A. Sette, and S. Colon. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J. Pharm. Sci. 81:731–735 (1992).

    Google Scholar 

  2. M. D. Aceto, W. L. Dewey, J. K. Chang, and N. M. Lee. Dynorphin-( 1-13): effects in non-tolerant and morphine-dependent rhesus monkeys. Eur. J. Pharmacol. 83:139–142 (1982).

    Google Scholar 

  3. P. G. Green and N. M. Lee. Dynorphin A(1-13) attenuates withdrawal in morphine-dependent rats: Effect of route of administration. Eur. J. Pharmacol. 145:267–272 (1988).

    Google Scholar 

  4. A. E. Takemori, H. H. Loh, and N. M. Lee. Suppression by dynorphin A(1-13) of the expression of opiate withdrawal and tolerance in mice. Eur. J. Pharmacol. 221:223–226 (1992).

    Google Scholar 

  5. H. Wen and W. Ho. Suppression of withdrawal symptoms by dynorphin in heroin addicts. Eur. J. Pharmacol. 82:183–186 (1982).

    Google Scholar 

  6. L. P. Hooke and N. M. Lee. Dynorphin A modulates acute and chronic opioid effects. J. Pharmacol. Exp. Ther. 273:292–297 (1995).

    Google Scholar 

  7. F. C. Tulunay, M. F. Jen, J. K. Chang, H. H. Loh, and N. M. Lee. Possible regulatory role of dynorphin on morphine-and endorphin-dependent analgesia. J. Pharmacol. Exp. Ther. 219:296–298 (1981).

    Google Scholar 

  8. L. P. Hooke, L. He, and N. M. Lee. [Des-Tyr1] Dynorphin A-(2-17) has naloxone-insensitive antinociceptive effect in the writhing assay. J. Pharmacol. Exp. Ther. 273:802–807 (1995).

    Google Scholar 

  9. H. L. Wen, W. K. K. Ho, and P. Y. Wen. Comparison of the effectiveness of different opioid peptides in suppressing heroin withdrawal. Eur. J. Pharmacol. 100:155–162 (1984).

    Google Scholar 

  10. T. Uneklabh, P. Sintavanarong, V. Wessagowit, and L. Lunkanapiochonchut. Clinical effect of dynorphin on heroin addicts. J. Med. Assoc. Thai. 78:509–516 (1995).

    Google Scholar 

  11. S. Specker, W. Wananukul, D. Hatsukami, K. Nolin, L. Hooke, M. J. Kreek, and P. R. Pentel. Effects of dynorphin A(1-13) on opiate withdrawal in humans. Psychopharmacology (Berl.) 137: 326–332 (1998).

    Google Scholar 

  12. S. Muller and G. Hochhaus. Metabolism of dynorphin A(1-13) in human blood and plasma. Pharm. Res. 12:1165–1170 (1995).

    Google Scholar 

  13. P. L. Gambus, T. W. Schnider, C. F. Minto, E. J. Youngs, V. Billard, W. G. Brose, G. Hochhaus, and S. L. Shafer. Pharmacokinetics of intravenous dynorphin A(1-13) in opioid-naive and opioid-treated human volunteers. Clin. Pharmacol. Ther. 64:27–38 (1998).

    Google Scholar 

  14. F. Haviv, T. D. Fitzpatrick, R. E. Swenson, C. J. Nichols, N. A. Mort, E. N. Bush, G. Diaz, G. Bammert, A. Nguyen, and N. S. Rhutasel. Effect of N-methyl substitution of the peptide bonds in luteinizing hormone-releasing hormone agonists. J. Med. Chem. 36:363–369 (1993).

    Google Scholar 

  15. D. E. Benovitzand and A. F. Spatola. Enkephalin pseudopeptides: resistance to in vitro proteolytic degradation afforded by amide bond replacements extends to remote sites. Peptides 6: 257–261 (1985).

    Google Scholar 

  16. M. Hiramatsu, K. Inoue, A. Ambo, Y. Sasaki, and T. Kameyama. Long-lasting antinociceptive effects of a novel dynorphin analogue, Tyr-D-Ala-Phe-Leu-Arg _ (CH2NH) Arg-__2, in mice. Br. J. Pharmacol. 132:1948–1956 (2001).

    Google Scholar 

  17. J. P. Meyer, T. J. Gillespie, S. Hom, V. J. Hruby, and T. P. Davis. In vitro stability of some reduced peptide bond pseudopeptide analogues of dynorphin A. Peptides 16:1215–1219 (1995).

    Google Scholar 

  18. A. T. Hagler, D. J. Osguthorpe, P. Dauber-Osguthorpe, and J. C. Hempel. Dynamics and conformational energetics of a peptide hormone: vasopressin. Science 227:1309–1315 (1985).

    Google Scholar 

  19. T. S. Shippenberg, M. Funada, and C. G. Schutz. Dynorphin A(2-17) attenuates the unconditioned but not the conditioned effects of opiate withdrawal in the rat. Psychopharmacology (Berl.) 151:351–358 (2000).

    Google Scholar 

  20. R. C. Caudle and A. J. Mannes. Dynorphin: friend or foe? Pain 87:235–239 (2000).

    Google Scholar 

  21. S. Woo, J. Garzon, P. Sanchez-Blazquez, F. C. Tulunay, J. K. Chang, and H. H. Loh. Dynorphin(1-10)amide: a potent and selective analog of dynorphin(1-13). Life Sci. 31:1817–1820 (1982).

    Google Scholar 

  22. P. R. Pentel, W. Wananukul, L. P. Hooke, C. R. N. Jones, D. Hatsukami, W. R. Anderson, and N. M. Lee. Effects of high intravenous doses of dynorphin A(1-13) on tail flick latency and central nervous system histology in rats. Pharm. Biochem. Behav. 51:387–390 (1995).

    Google Scholar 

  23. F. E. Damourand and D. L. Smith. A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72:74–79 (1941).

    Google Scholar 

  24. A. B. Lohmann and F. L. Smith. Buprenorphine substitution ameliorates spontaneous withdrawal in fentanyl-dependent rat pups. Pediatr. Res. 49:50–55 (2001).

    Google Scholar 

  25. L. S. Harris and A. K. Pierson. Some narcotic antagonists in the benzomorphan series.J. Pharmacol. Exp. Ther. 143:141–148 (1964).

    Google Scholar 

  26. R. A. Skidgel and E. G. Erdos. Novel activity of human angiotensin I converting enzyme: release of the NH2-and COOHterminal tripeptides from the luteinizing hormone-releasing hormone. Proc. Natl. Acad. Sci. USA 82:1025–1029 (1985).

    Google Scholar 

  27. R. A. Skidgel, S. Engelbrecht, A. R. Johnson, and E. G. Erdos. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5: 769–776 (1984).

    Google Scholar 

  28. R. A. Skidgel, D. K. Weerasinghe, and E. G. Erdos. Structure of human carboxypeptidase N (kininase I). Adv. Exp. Med. Biol. 247A:325–329 (1989).

    Google Scholar 

  29. H. S. Cheung, F. L. Wang, M. A. Ondetti, E. F. Sabo, and D. W. Cushman. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 255:401–407 (1980).

    Google Scholar 

  30. I. Lantzand and L. Terenius. High enkephalyl peptide degradation, due to angiotensin-converting enzyme-like activity in human CSF. FEBS Lett. 193:31–34 (1985).

    Google Scholar 

  31. A. M. Kawasaki, R. J. Knapp, A. Walton, W. S. Wire, T. Zalewska, H. I. Yamamura, F. Porreca, T. F. Burks, and V. J. Hruby. Syntheses, opioid binding affinities, and potencies of dynorphin A analogues substituted in positions, 1, 6, 7, 8 and 10. Int. J. Pept. Protein Res. 42:411–419 (1993).

    Google Scholar 

  32. A. E. Takemori, H. H. Loh, and N. M. Lee. Suppression by dynorphin A and [des-Tyr1]-dynorphin A peptides of the expression of opiate withdrawal and tolerance in morphine-dependent mice. J. Pharmacol. Exp. Ther. 266:121–124 (1993).

    Google Scholar 

  33. T. Nakazawa, Y. Furuya, T. Kaneko, K. Yamatsu, H. Yoshino, and S. Tachibana. Analgesia produced by E-2078, a systemically active dynorphin analog, in mice. J. Pharmacol. Exp. Ther. 252: 1247–1254 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Hochhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Fayoumi, S.I., Brugos, B., Arya, V. et al. Identification of Stabilized Dynorphin Derivatives for Suppressing Tolerance in Morphine-Dependent Rats. Pharm Res 21, 1450–1456 (2004). https://doi.org/10.1023/B:PHAM.0000036920.50291.5b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000036920.50291.5b

Navigation