Skip to main content
Log in

A Novel One-Step Drug-Loading Procedure for Water-Soluble Amphiphilic Nanocarriers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The lack of water-solubility hampers the use of many potent pharmaceuticals. Polymeric micelles are self-assembled nanocarriers with versatile properties that can be engineered to solubilize, target, and release hydrophobic drugs in a controlled-release fashion. Unfortunately, their large-scale use is limited by the incorporation methods available, especially when sterile dosage forms are sought.

Methods. In this manuscript, we describe a straightforward, economical, and innovative drug-loading procedure that consists in dissolving both the drug and an amphiphilic diblock copolymer in a water/tert-butanol mixture that is subsequently freeze-dried.

Results. We demonstrate that monodisperse 20-60 nm-sized drug-loaded polymeric micelles are produced directly and spontaneously upon rehydration of the freeze-dried cake. To establish the proof-of-principle, two hydrophobic taxane derivatives were solubilized in the micelles, and their partition coefficient was determined.

Conclusions. This approach is efficient yet astonishingly simple and may be of great interest for scientists working in nanotechnology and pharmaceutical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66-69 (2001).

    Google Scholar 

  2. A. T. Woolley, C. Guillemette, C. Li Cheung, D. E. Housman, and C. M. Lieber. Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18:760-763 (2000).

    Google Scholar 

  3. L. Zhang and A. Eisenberg. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728-1731 (1995).

    Google Scholar 

  4. L. F. Zhang, K. Yu, and A. Eisenberg. Ion-induced morphological changes in crew-cut aggretates of amphiphilic block copolymers. Science 272:1777-1779 (1996).

    Google Scholar 

  5. A. Harada and K. Kataoka. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65-67 (1999).

    Google Scholar 

  6. D. E. Discher and A. Eisenberg. Polymer vesicles. Science 297:967-973 (2002).

    Google Scholar 

  7. A. Kabanov, P. Lemieux, S. Vinogranov, and V. Alakhov. Pluronic block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54:223-233 (2002).

    Google Scholar 

  8. V. P. Torchilin, A. N. Lukyanov, Z. Gao, and B. Papahadjopoulos-Sternberg. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 100:6039-6044 (2003).

    Google Scholar 

  9. C. Allen, D. Maysinger, and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces 16:3-27 (1999).

    Google Scholar 

  10. M. C. Jones and J. C. Leroux. Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48:101-111 (1999).

    Google Scholar 

  11. M. H. Dufresne, E. Fournier, M. C. Jones, M. Ranger, and J. C. Leroux. Block copolymer micelles—engineering versatile carriers for drugs and biomacromolecules. In R. Gurny (ed.), Challenge in Drug Delivery for the New Millenium, Bulletin technique Gattefosse 96 (R. Gurny, ed.), Saint-Priest, 2003, pp. 103-118.

  12. G. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J. Control. Rel. 29:17-23 (1994).

    Google Scholar 

  13. R. Savic, L. Luo, A. Eisenberg, and D. Maysinger. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615-618 (2003).

    Google Scholar 

  14. G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12:192-195 (1995).

    Google Scholar 

  15. S. B. La, T. Okano, and K. Kataoka. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85:85-90 (1996).

    Google Scholar 

  16. X. Zhang, J. K. Jackson, and H. M. Burt. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm. 132:195-206 (1996).

    Google Scholar 

  17. A. Benahmed, M. Ranger, and J. C. Leroux. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm. Res. 18:323-328 (2001).

    Google Scholar 

  18. L. Luo, M. Ranger, D. G. Lessard, D. Le Garrec, S. Gori, J. C. Leroux, S. Rimmer, and D. Smith. Novel amphiphilic diblock copolymer of low molecular weight poly(N-vinylpyrrolidone)-block-poly(D,L-lactide): Synthesis, characterization and micellization. Macromolecules (2004).

  19. F. M. Winnik, A. Adronov, and H. Kitano. Pyrene-labeled amphiphilic poly-(N-isopropylacrylamides) prepared by using a lipophilic radical initiator: synthesis, solution properties in water, and interactions with liposomes. Can. J. Chem. 73:2030-2040 (1995).

    Google Scholar 

  20. A. K. Krishna and D. R. Flanagan. Micellar solubilization of a new antimalarial drug, beta-arteether. J. Pharm. Sci. 78:574-576 (1989).

    Google Scholar 

  21. R. O. R. Costa and R. F. S. Freitas. Phase behaviour of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer 43:5879-5885 (2002).

    Google Scholar 

  22. D. L. Teagarden and D. S. Baker. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur. J. Pharm. Sci. 15:115-133 (2002).

    Google Scholar 

  23. U. Isele, P. Van Hoogevest, R. Hilfiker, and H. G. Capraro. and Schieweck. Large-scale production of liposomes containing monomeric zinc phthalocyanine by controlled dilution of organic solvents. J. Pharm. Sci. 83:1608-1616 (1994).

    Google Scholar 

  24. V. J. Stella, K. Umprayn, and W. N. Waugh. Development of parenteral formulations of experimental cytotoxic agents. I. Rhizoxin (NSC-332598). Int. J. Pharm. 43:191-199 (1988).

    Google Scholar 

  25. K. Kasraian and P. P. DeLuca. Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm. Res. 12:484-490 (1995).

    Google Scholar 

  26. K. Kasraian and P. P. DeLuca. The effect of tertiary butyl alcohol on the resistance of the dry product layer during primary drying. Pharm. Res. 12:491-495 (1995).

    Google Scholar 

  27. B. Nuijen, M. Bouma, R. E. Henrar, P. Floriano, J. M. Jimeno, H. Talsma, J. J. Kettenes-van den Bosch, A. J. Heck, A. Bult, and J. H. Beijnen. Pharmaceutical development of a parenteral lyophilized formulation of the novel antitumor agent aplidine. PDA J. Pharm. Sci. Technol. 54:193-208 (2000).

    Google Scholar 

  28. N. Ni, M. Tesconi, S. E. Tabibi, S. Gupta, and S. H. Yalkowsky. Use of pure t-butanol as a solvent for freeze-drying: a case study. Int. J. Pharm. 226:39-46 (2001).

    Google Scholar 

  29. C. Kim, S. C. Lee, J. H. Shin, and J. S. Yoon. Amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and poly(1,3-trimethylene carbonate): synthesis and micellar characteristics. Macromolecules 33:7448-7452 (2000).

    Google Scholar 

  30. E. A. Grulke. Solubility parameter values. In J. Brandrupand and E. H. Immergut (eds.), Polymer Handbook, Vol. 7, John Wiley and Sons Inc., New York, 1989, pp. 519-559.

    Google Scholar 

  31. D. V. Krevelen. Cohesive properties and solubility. In D. V. Krevelen (ed.), Properties of Polymers: Ttheir Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier Scientific, New York, 1990, pp. 189-225.

    Google Scholar 

  32. L. Zhang, H. Shen, and A. Eisenberg. Phase separation behaviour and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules 30:1001-1011 (1997).

    Google Scholar 

  33. I. C. Riegel, D. Samios, C. L. Petzhold, and A. Eisenberg. Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents. Polymer 44:2117-2128 (2003).

    Google Scholar 

  34. International Conference on Harmonization (ICH), Harmonized Tripartite guidlines. Impurities: residual solvent. Step 4, Consensus guideline, 17 July 1997.

  35. J. F. Douglas, J. Roovers, and K. F. Freed. Characterization of branching architecture through ‘Universal’ ratios of polymer solution properties. Macromolecules 23:4168-4180 (1990).

    Google Scholar 

  36. A. Harada and K. Kataoka. Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstochiometric mixing ratios. Langmuir 15:4208-4212 (1999).

    Google Scholar 

  37. S. C. Lee, Y. Chang, J. S. Yoon, C. Kim, I. C. Kwon, Y. H. Kim, and S. Y. Jeong. Synthesis and micellar characterization of amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and aliphatic polyesters. Macromolecules 32:1847-1852 (1999).

    Google Scholar 

  38. C. Allen, J. Han, Y. Yu, D. Maysinger, and A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Controlled Release 63:275-286 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Leroux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, E., Dufresne, MH., Smith, D.C. et al. A Novel One-Step Drug-Loading Procedure for Water-Soluble Amphiphilic Nanocarriers. Pharm Res 21, 962–968 (2004). https://doi.org/10.1023/B:PHAM.0000029284.40637.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000029284.40637.69

Navigation