Skip to main content
Log in

High-resolution proteomic mapping in the vertebrate central nervous system: Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1)

  • Published:
Journal of Neurocytology

Abstract

Combined confocal microscopy and freeze-fracture replica immunogold labeling (FRIL) were used to examine the connexin identity at electrical synapses in goldfish brain and rat retina, and to test for “co-localization” vs. “close proximity” of connexins to other functionally interacting proteins in synapses of goldfish and mouse brain and rat retina. In goldfish brain, confocal microscopy revealed immunofluorescence for connexin35 (Cx35) and NMDA-R1 (NR1) glutamate receptor protein in Mauthner Cell/Club Ending synapses. By FRIL double labeling, NR1 glutamate receptors were found in clusters of intramembrane particles in the postsynaptic membrane extraplasmic leaflets, and these distinctive postsynaptic densities were in close proximity (0.1–0.3 μm) to neuronal gap junctions labeled for Cx35, which is the fish ortholog of connexin36 (Cx36) found at neuronal gap junctions in mammals. Immunogold labeling for Cx36 in adult rat retina revealed abundant gap junctions, including several previously unrecognized morphological types. As in goldfish hindbrain, immunogold double labeling revealed NR1-containing postsynaptic densities localized near Cx36-labeled gap junction in rat inferior olive. Confocal immunofluorescence microscopy revealed widespread co-localization of Cx36 and ZO-1, particularly in the reticular thalamic nucleus and amygdala of mouse brain. By FRIL, ZO-1 immunoreactivity was co-localized with Cx36 at individual gap junction plaques in rat retinal neurons. As cytoplasmic accessory proteins, ZO-1 and possibly related members of the membrane-associated guanylate kinase (MAGUK) family represent scaffolding proteins that may bind to and regulate the activity of many neuronal gap junctions. These data document the power of combining immunofluorescence confocal microscopy with FRIL ultrastructural imaging and immunogold labeling to determine the relative proximities of proteins that are involved in short- vs. intermediate-range molecular interactions in the complex membrane appositions at synapses between neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • BELLUARDO, N., MUDO, G., TROVATO-SALINARO, A., LE GURUN, S., CHAROLLAIS, A., SERRE-BEINIER, V., AMATO, G., HAEFLIGER, J.-A., MEDA, P. & CONDORELLI, D. F. (2000) Expression of connexin36 in the adult and developing rat brain. Brain Research 19, 121-138.

    Google Scholar 

  • BERMAN, N., DUNN, R. & MALER, L. (2001) Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. J. Neurophysiol. 86, 1612-1621.

    Google Scholar 

  • BRANTON, D., BULLIVANT, S., GILULA, N. B., KARNOVSKY, M. J., MOOR, H., NORTHCOTE, D. H., PACKER, L., SATIR, B., SATIR, P., SPETH, V., STAEHELIN, L. A., STEERE, R. L. & WEINSTEIN, R. S. (1975) Freeze-etching nomenclature. Science 190, 54-56.

    Google Scholar 

  • CONDORELLI, D. F., PARENTI, R., SPINELLA, F., SALINARO, A. T., BELLUARDO, N., CARDILE, V. & CICIRATA, F. (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur. J. Neurosci. 10, 1202-1208.

    Google Scholar 

  • CONDORELLI, D. F., PARENTI, R., SPINELLA, F., TROVATO SALINARO, A. & MUDO, G. (2003) Expression of Cx36 in mammalian brain neurons. Eur. J. Neurosci. 10, 1202-1208.

    Google Scholar 

  • DEANS, M. R., GIBSON, J. R., SELLITTO, C., CONNORS, B. W. & PAUL, D. (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477-485.

    Google Scholar 

  • DINCHUK, J. E., JOHNSON, T. J. A. & RASH, J. E. (1987) Postreplication labeling of E-leaflet molecules: Membrane immunoglobulins localized in sectioned labeled replicas examined by TEM and HVEM. J. Electron Microsc. Tech. 7, 1-16.

    Google Scholar 

  • DUFFY, H. S., DELMAR, M. & SPRAY, D. C. (2002) Formation of the gap junction nexus: Binding partners for connexins. J. Physiol. Paris 96, 243-249.

    Google Scholar 

  • FUJIMOTO, K. (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell Science 108, 3443-3449.

    Google Scholar 

  • FUJIMOTO, K. (1997) SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: Practical procedure, interpretation and application. Histochem. Cell Biol. 107, 87-96.

    Google Scholar 

  • FURSHPAN, E. J. (1964) Electrical transmission at an excitatory synapse in a vertebrate brain. Science 144, 878-880.

    Google Scholar 

  • GIEPMANS, B. N. & MOOLENAAR, W. H. (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zonula occludens-1 protein. Curr. Biol. 8, 931-934.

    Google Scholar 

  • GIOT, L., BADER, J. S., BROUWER, C., CHAUDHURI, A., KUANG, B., LI, Y., HAO, Y. L., OOI, C. E., GODWIN, B., VITOLS, E. et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727-1736.

    Google Scholar 

  • GOLD, G. H. & DOWLING, J. E. (1979) Photoreceptor coupling in retina of the toad, Bufo Marinus. I. Anatomy. J. Neurophysiol. 42, 292-310.

    Google Scholar 

  • GONZALEZ-MARISCAL, L., BETANZOS, A. & AVILA-FLORES, A. (2000) MAGUK proteins: Structure and role in the tight junction. Cell Dev. Biol. 11, 315-324.

    Google Scholar 

  • GONZALES-MARISCAL, L., BETANZOS, A., NAVA, P. & JARAMILLO, B. E. (2003) Tight junction proteins. Prog. Biophys. Mol. Biol. 81, 1-44.

    Google Scholar 

  • HARRIS, K. M. & LANDIS, D. M. D. (1986) Membrane structure at synaptic junctions in area CA1 of the rat hippocampus. Neuroscience 19, 857-872.

    Google Scholar 

  • HOF, P. R., YOUNG, W. G., BLOOM, F. E., BELICHENKO, P. V. & CELIO, M. R. (2000) Comparative cytoarchitectonic atlas of the C57BL/6 and 129/Sv mouse brains. NY: Elsevier.

    Google Scholar 

  • HORMUZDI, S. J., PAIS, I., LEBEAU, F. E. N., TOWERS, S. K., ROZOV, A., BUHL, E. H., WHITTINGTON, M. A. & MONYER, H. (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487-495.

    Google Scholar 

  • INAGAKI, M., IRIE, K., DEGUCHI-TAWARADA, M., IKEDA, W., OHTSUKA, T., TAKEUCHI, M. & TAKAI, Y. (2003) Nectin-dependent localization of ZO-1 at puncta adhaerentia junctions between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of adult mouse hippocampus. J. Comp. Neurol. 460, 514-524.

    Google Scholar 

  • INTERNAT. HUMAN GENOME SEQ. CONS. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921.

    Google Scholar 

  • KAUSALYA, P. J., REICHERT, M. & HUNZIKER, W. (2001) Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells. FEBS Letters 505, 92-96.

    Google Scholar 

  • LAING, J. G., MANLEY-MARKOWSKI, R. N., KOVAL, M., CIVITELLI, R. & STEINBERG, T. H. (2001) Connexin45 interacts with zonula occludens-1 and connexin43 in osteoblastic cells. J. Biol. Chem. 276, 23051-23055.

    Google Scholar 

  • LANDISMAN, C. E., LONG, M. A., BEIERLEIN, M., DEANS, M. R., PAUL, D. & CONNORS, B. W. (2002) Electrical synapses in the thalamic reticular nucleus. J. Neurosci. 22, 1002-1009.

    Google Scholar 

  • LI, X., OLSON, C., LU, S., KAMASAWA, N., YASUMURA, T., RASH, J. E. & NAGY, J. I. (2004a) Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur. J. Neurosci. 19, 2132-2146.

    Google Scholar 

  • LI, X., OLSON, C., LU, S. & NAGY, J. I. (2004b) Connexin36 association with zonula occludens-1 (ZO-1) in HeLa cells, β-TC-3 cells, pancreas and adrenal gland (Submitted).

  • MIRAGALL, F., KRAUSE, D., DE VRIES, U. & DERMIETZEL, R. (1994) Expression of the tight junction protein ZO-1 in the olfactory system: Presence of ZO-1 on olfactory sensory neurons and glial cells. J. Comp. Neurol. 341, 433-448.

    Google Scholar 

  • MULLER, J. F., MASCAGNI, F., BETETTE, R. L. N. & MCDONALD, A. J. (2002) Synaptic connectivity of parvalbumin—immunoreactive neurons in the basolateral amygdala. Soc. Neurosci. Abs. 28, 430.7

    Google Scholar 

  • NAGY, J. I. & DERMIETZEL, R. (2000) Gap junctions and connexins in the mammalian central nervous system. In Advances in Molecular and Cell Biology (edited by HERTZBERG, E. L.) pp. 323-396. Greenwich: JAI Press vol. 30.

    Google Scholar 

  • NIELSEN, P. A., BARUCH, A., GIEPMANS, B. N. & KUMAR, N. M. (2001) Characterization of the association of connexins and ZO-1 in the lens. Cell Commun. Adhes. 8, 213-217.

    Google Scholar 

  • NIELSEN, P. A., BARUCH, A., SHESTAPOLOV, V. I., GIEPMANS, B. N., BENEDETTI, E. L. & KUMAR, N. M. (2003) Lens connexins Cx46 and Cx50 interact with Zonula Occludens Protein-1 (ZO-1). Mol. Biol. Cell 14, 2470-2481.

    Google Scholar 

  • NIELSEN, P. A., BEAHM, D. L., GIEPMANS, B. N., BARUCH, A., HALL, J. E. & KUMAR, N. M. (2002) Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1. J. Biol. Chem. 277, 38272-38283.

    Google Scholar 

  • O'BRIEN, J., BRUZZONE, R., WHITE, T. W., ALUBAIDI, M. R. & RIPPS, H. (1998) Cloning and expression of two related connexins from the perch retina define distinct subgroups of the connexin family. J. Neurosci. 18, 7625-7637.

    Google Scholar 

  • OTTERSEN, O. P. & LANDSEND, A. S. (2003) Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219-2224.

    Google Scholar 

  • PEREDA, A. & FABER, D. S. (1996) Activity dependent short-term plasticity of intercellular coupling. J. Neurosci. 16, 983-992.

    Google Scholar 

  • PEREDA, A., O'BRIEN, J., NAGY, J. I., BUKAUSKAS, F., DAVIDSON, K. G. V., KAMASAWA, N., YASUMURA, T. & RASH, J. E. (2003) Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. J. Neurosci. 23, 7489-7503.

    Google Scholar 

  • PEREDA, A. E., BELL, T., CHANG, B., CZERNIC, A., NAIRN, A., SODERLING, T. & FABER, D. S. (1998) Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap junctional conductance and glutamatergic transmission. Pro. Natl. Acad. Sci. 95, 13272-13277.

    Google Scholar 

  • PHILLIPS, T. E. & BOYNE, A. F. (1984) Liquid nitrogen-based quick freezing: Experiments with bounce-free delivery of cholinergic nerve terminals to a metal surface. J. Electron Microsc. Tech. 1, 9-29.

    Google Scholar 

  • RASH, J. E., DILLMAN, R., MORITA, M., WHALEN, L. R., GUTHRIE, P. B., FAY-GUTHRIE, D. & WHEELER, D. W. (1995) Grid-mapped freeze fracture: Correlative confocal laser scanning microscopy and freeze-fracture electron microscopy of preselected neurons in spinal cord slices. In Techniques in Modern Biomedical Microscopy. Vol 2. Rapid Freezing, Freeze-Fracture and Deep Etching (edited by SHOTTON, D. M. & SEVERS, N. J.) pp. 127-150. Wiley-Liss.

  • RASH, J. E., DILLMAN, R. K., BILHARTZ, B. L., DUFFY, H. S., WHALEN, L. R. & YASUMURA, T. (1996) Mixed synapses discovered and mapped throughout mammalian spinal cord. Proc. Natl. Acad. Sci. USA 93, 4235-4239.

    Google Scholar 

  • RASH, J. E., DUFFY, H. S., DUDEK, F. E., BILHARTZ, B. L., WHALEN, L. R. & YASUMURA, T. (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J. Comp. Neurol. 388, 265-292.

    Google Scholar 

  • RASH, J. E., HUDSON, C. S. & ELLISMAN, M. H. (1978) Ultrastructure of acetylcholine receptors at the mammalian neuromuscular junction. In Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (edited by STRAUB, R. W. & BOLIS, L.) pp. 47-68. New York: Raven Press.

    Google Scholar 

  • RASH, J. E., STAINES, W. A., YASUMURA, T., PATEL, D., HUDSON, C. S., STELMACK, G. L. & NAGY, J. I. (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin36 (Cx36) but not Cx32 or Cx43. Proc. Natl. Acad. Sci. (USA) 97, 7573-7578.

    Google Scholar 

  • RASH, J. E. & YASUMURA, T. (1999) Direct immunogold labeling of connexins and aquaporin4 in freeze-fracture replicas of liver, brain and spinal cord: Factors limiting quantitative analysis. Cell Tissue Res. 296, 307-321.

    Google Scholar 

  • RASH, J. E., YASUMURA, T., DAVIDSON, K., FURMAN, C. S., DUDEK, F. E. & NAGY, J. I. (2001a) Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun. Adhes. 8, 315-320.

    Google Scholar 

  • RASH, J. E., YASUMURA, T. & DUDEK, F. E. (1998a) Ultrastructure, histological distribution, and freeze-fracture immunocytochemistry of gap junctions in rat brain and spinal cord. Cell Biol. Internat. 22, 731-749.

    Google Scholar 

  • RASH, J. E., YASUMURA, T., DUDEK, F. E. & NAGY, J. I. (2001b) Cell-specific expression of connexins, and evidence for restricted gap junctional coupling between glial cells and between neurons. J. Neurosci. 21, 1983-2001.

    Google Scholar 

  • RASH, J. E., YASUMURA, T., HUDSON, C. S., AGRE, P. & NIELSEN, S. (1998b) Direct immunogold labeling of Aquaporin-4 in “square arrays” of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Pro. Natl. Acad. Sci. 95, 11981-11986.

    Google Scholar 

  • RAVIOLA, E. & GILULA, N. B. (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. J. Cell Biol. 65, 192-222.

    Google Scholar 

  • ROBERTSON, J. D. (1963) The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201-221.

    Google Scholar 

  • SMITH, M. & PEREDA, A. (2003) Chemical synaptic activity modulates nearby electrical synapses. Pro. Natl. Acad. Sci. 100, 4849-4854.

    Google Scholar 

  • TUTTLE, R., MASUKO, S. & NAKAJIMA, Y. (1986) Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: Specialized reference to the quantitative analysis of gap junctions. J. Comp. Neurol. 246, 202-211.

    Google Scholar 

  • VENTER, J. C., ADAMS, M. D. et al. (2001) The sequence of the human genome. Science 291, 1304-1351.

    Google Scholar 

  • VERVEER, P. J., HARPUR, A. G. & BASTIAENS, P. I. H. (2003) Imaging protein interactions by FRET microscopy. In Protein-Protein Interactions: A Molecular Cloning Manual (edited by GOLEMIS, E.) pp. 181-213. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • VORBRODT, A. & DOBROGOWSKI, D. H. (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist's view. Brain Res. Rev. 42, 221-242.

    Google Scholar 

  • WILLECKE, K., EIBERGER, J., DEGEN, J., ECKARDT, D., ROMUALDI, A., GUELDENAGEL, M., DEUTSCH, U. & SOEHL, G. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725-737.

    Google Scholar 

  • WINKLER, H., WILDHABER, H. & GROSS, H. (2002) Decoration on the surface of a regular protein layer. Ultramicroscopy 16, 331-339.

    Google Scholar 

  • YANG, X. D., KORN, H. & FABER, D. S. (1990) Long-term potentiation of electrotonic coupling at mixed synapses. Nature 348, 542-545.

    Google Scholar 

  • ZINGSHEIM, H. P., ABERMAN, R. & BACHMANN, L. (1970) Shadow casting and heat damage. Proc. 7th Int. Cong. Elec. Microsc. (Grenoble) 1, 411-412. (Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rash, J.E., Pereda, A., Kamasawa, N. et al. High-resolution proteomic mapping in the vertebrate central nervous system: Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). J Neurocytol 33, 131–151 (2004). https://doi.org/10.1023/B:NEUR.0000029653.34094.0b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000029653.34094.0b

Keywords

Navigation