Skip to main content
Log in

Holoprosencephaly—Topologic variations in a Liveborn series: A general model based upon MRI analysis

  • Published:
Journal of Neurocytology

Abstract

We present an MRI-based anatomic analysis of a series of 9 human brains, representing lobar, semilobar and alobar forms of holoprosencephaly. The analysis of these variable forms of the malformation is based upon a topologic systematics established in a prior analysis of a homogeneous set of semilobar malformations. This systematics has the dual advantage that it serves both as a uniform reference for qualitative description and as a quantitative descriptive base for mathematical correlations between parameters of topology and of growth and development. Within this systematics, the prosencephalic midline is divided from caudal to rostral into diencephalic (DD—right and left, subthalamus through suprachiasmatic junction with telencephalon), telencephalic (TT—right and left, suprachiasmatic border of telencephalon midline to hippocampal commissure) and diencephalic—telencephalic (DT—right and left—hippocampal commissure through temporal limb of choroid fissure) segments. The topologic abnormality of the initial semilobar series was expressed in an orderly rostral to caudal gradient along the TT segment. In each malformation, normal midline topology began with a small posterior corpus callosum. Although the topologic anomaly in the present series invariably also involved the TT segment, this involvement was not continuous and was variably associated with anomalies of the DD in 6 and unilaterally of the DT in 1 brain. In the present as well as with the earlier series of HPE malformations but not in “normative brains,” total telencephalic growth is strongly correlated with the length of the midline telencephalic segment. We propose that this system of analysis will be sensitive to the developmental stage and locus of expression of genetic and non-genetic determinants of the formal origin of HPE. For all of the present series, karyotype anlyses were normal. Mutations in the Shh and Zic2 genes were excluded in 2 cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BROWN, L. Y., ODENT, S., DAVID, V., BLAYAU, M., DUBOURG, C., APACIK, C., DELGADO, M. A., HALL, B. D., REYNOLDS, J. F., SOMMER, A., WEICZOREK, D., BROWN, S. A. & MUENKE, M. (2001) Holoprosencephaly due to mutations in ZIC2: Alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 10, 791-796.

    Google Scholar 

  • BRISCOE, J. & ERICSON, J. (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Seminars in Cellular and Developmental Biology 10, 353-362.

    Google Scholar 

  • BROCKLEHURST, G. (1973) Diencephalic cysts. Journal of Neurosurgery 38, 47-51.

    Google Scholar 

  • CAVINESS, V., KENNEDY, D. N., RICHELME, C., RADEMACHER, R. & FILIPEK, P. (1996) The human brain age 7–11 years: A volumetric analysis based upon magnetic resonance images. Cerebral Cortex 6, 726-736.

    Google Scholar 

  • COHEN, M. M., JR. (1989a) Perspectives on holoprosencephaly: Part I. Epidemiology, genetics, and syndromology. Teratology 40, 211-235.

    Google Scholar 

  • COHEN, M. M., JR. (1989b) Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. American Journal of Medical Genetics 34, 271-288.

    Google Scholar 

  • COHEN, M. M., JR. (2001) Problems in the definition of holoprosencephaly. American Journal of Medical Genetics 103, 183-187.

    Google Scholar 

  • COHEN, M. M., JR. (2002) Malformations of the craniofacial region: Evolutionary, embryonic, genetic, and clinical perspectives. Am J Med Genet 115, 245-268.

    Google Scholar 

  • COHEN, M. M., JR. & SHIOTA, K. (2002) Teratogenesis of holoprosencephaly. Am J Med Genet 109, 1-15.

    Google Scholar 

  • COHEN, M. M., JR. & SULIK, K. K. (1992) Perspectives on holoprosencephaly: Part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. Journal of Craniofacial and Genetic Developmental Biology 12, 196-244.

    Google Scholar 

  • DEMYER, W. (1977) Holoprosencephaly (cyclopiaarhinencephaly). In Handbook of Clinical Neurology: Congenital Malformations of the Brain and Skull Part I (edited by VINKEN, P. & BRUYN, G.) pp. 431-478. Amsterdam: North Holland.

    Google Scholar 

  • FILIPEK, P. A., RICHELME, C., KENNEDY, D. N. & CAVINESS, V. (1994) The young adult human brain: An MRI-based morphometric analysis. Cerebral Cortex 4, 344-360.

    Google Scholar 

  • FUJIMOTO, S., TOGARI, H., BANNO, T. & WADA, Y. (1999) Syntelencephaly associated with connected transhemispheric cleft of focal cortical dysplasia. Pediatric Neurology 20, 387-389.

    Google Scholar 

  • GILLES, F. H., LEVITON, A. & DOOLING, E. C. (1983) The Developing Human Brain. Boston, MA: John Wright, PSG Inc.

    Google Scholar 

  • GOLDEN, J. A. (1998) Holoprosencephaly: A defect in brain patterning. Journal of Neuropathology and Experimental Neurology 57, 991-999.

    Google Scholar 

  • GOLDEN, J. A. (1999) Towards a greater understanding of the pathogenesis of holoprosencephaly. Brain and Development 21, 513-521.

    Google Scholar 

  • HEBERT, J., MISHINA, Y. & MCCONNELL, S. (2002) BMP Signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35, 1029-1041.

    Google Scholar 

  • HEUSSLER, H. S., SURI, M., YOUNG, I. D. & MUENKE, M. (2002) Extreme variability of expression of a Sonic Hedgehog mutation: Attention difficulties and holoprosencephaly. Archives of Diseases in Childhood 86, 293-296.

    Google Scholar 

  • KELLEY, R. I. (2000) Inborn errors of cholesterol biosynthesis. Advances in Pediatrics 47, 1-53.

    Google Scholar 

  • KUNDRAT, H. (1882) Arhinencepyhalie als Typische Art von Missbildung. Graz: Von Leuschner and Lubensky.

    Google Scholar 

  • MATSUNAGA, E. & SHIOTA, K. (1977) Holoprosencephaly in human embryos: Epidemiologic studies of 150 cases. Teratology 16, 261-272.

    Google Scholar 

  • MING, J. E., KAUPAS, M. E., ROESSLER, E., BRUNNER, H. G., GOLABI, M., TEKIN, M., STRATTON, R. F., SUJANSKY, E., BALE, S. J. & MUENKE, M. (2002) Mutations in PATCHED-1, the receptor for Sonic Hedgehog, are associated with holoprosencephaly. Human Genetics 111, 464.

    Google Scholar 

  • MING, J. E., ROESSLER, E. & MUENKE, M. (1998) Human developmental disorders and the Sonic hedgehog pathway. Molecular Medicine Today 4, 343-349.

    Google Scholar 

  • MUENKE, M. & BEACHY, P. A. (2000) Genetics of ventral forebrain development and holoprosencephaly. Current Opinions in Genetic Development 10, 262-269.

    Google Scholar 

  • MUENKE, M. & COHEN, M. M., JR. (2000) Genetic approaches to understanding brain development: Holoprosencephaly as a model. Mental Retardation and Developmental Disabilities Research Review 6, 15-21.

    Google Scholar 

  • MULLER, F. & O'RAHILLY, R. (1989) Mediobasal prosencephalic defects, including holoprosencephaly and cyclopia, in relation to the development of the human forebrain. American Journal of Anatomy 185, 391-414.

    Google Scholar 

  • NANNI, L., CROEN, L. A., LAMMER, E. J. & MUENKE, M. (2000) Holoprosencephaly: Molecular study of a California population. American Journal of Medical Genetics 90, 315-319.

    Google Scholar 

  • NANNI, L., MING, J. E., BOCIAN, M., STEINHAUS, K., BIANCHI, D. W., DIE-SMULDERS, C., GIANNOTTI, A., IMAIZUMI, K., JONES, K. L., CAMPO, M. D., MARTIN, R. A., MEINECKE, P., PIERPONT, M. E., ROBIN, N. H., YOUNG, I. D., ROESSLER, E. & MUENKE, M. (1999) The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8, 2479-2488.

    Google Scholar 

  • OHKUBO, Y., CHIANG, C. & RUBENSTEIN, J. L. (2002) Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 111, 1-17.

    Google Scholar 

  • O'LEARY, D. D. & NAKAGAWA, Y. (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12, 14-25.

    Google Scholar 

  • PROBST, F. (1979) The Prosencephalies: Neuroradiological Appearances and Differential Diagnsosis. Berlin: Springer Verlag.

    Google Scholar 

  • ROESSLER, E. & MUENKE, M. (1998) Holoprosencephaly: A paradigm for the complex genetics of brain development. Journal of Inherited and Metabolic Diseases 21, 481-497.

    Google Scholar 

  • ROESSLER, E. & MUENKE, M. (2003) How a Hedgehog might see holoprosencephaly. Hum Mol Genet 12, R15-25.

    Google Scholar 

  • SARNAT, H. B. & FLORES-SARNAT, L. (2001) Neuropathologic research strategies in holoprosencephaly. J Child Neurol 16, 918-931.

    Google Scholar 

  • SCHELL-APACIK, C., RIVERO, M., KNEPPER, J. L., ROESSLER, E., MUENKE, M. & MING, J. E. (2003) Sonic Hedgehog mutations causing human holoprosencephaly impair neural patterning activity. Hum Genet 113, 170-177.

    Google Scholar 

  • SCHUURMANS, C. & GUILLEMOT, F. (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12, 26-34.

    Google Scholar 

  • SHIMAMURA, K., HARTIGAN, D., MARTINEZ, S., PUELLES, L. & RUBENSTEIN, J. (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923-3933.

    Google Scholar 

  • SIEBERT, J., COHEN, M. M., JR., SULIK, K. K., SHAW, C.-M. & LEMIRE, R. (1990) Holoprosencephaly: An Overview and Atlas of Cases. New York: Wiley-Liss.

    Google Scholar 

  • SIMON, E. M., HEVNER, R. F., PINTER, J., CLEGG, N. J., DELGADO, M., KINSMAN, S. L., HAHN, J. S. & BARKOVICH, A. J. (2001) The dorsal cyst in holoprosencephaly and the role of the thalamus in its formation. Neuroradiology 43, 787-791.

    Google Scholar 

  • SIMON, E. M., HEVNER, R. F., PINTER, J. D., CLEGG, N. J., DELGADO, M., KINSMAN, S. L., HAHN, J. S. & BARKOVICH, A. J. (2002) The middle interhemispheric variant of holoprosencephaly. American Journal of Neuroradiology 23, 151-156.

    Google Scholar 

  • TAKAHASHI, T., KINSMAN, S. L., MAKRIS, N., GRANT, E., HAZELGROVE, C., KENNEDY, D. N., TAKAHASHI, T., FREDERICKSON, K., MORI, S. & CAVINESS, V. S. (2003) Semilobar holoprosencephaly with midline “seam:” A topologic and morphogenetic model based upon MRI analysis. Cerebral Cortex (in press).

  • WALLIS, D. E., ROESSLER, E., HEHR, U., NANNI, L., WILTSHIRE, T., RICHIERI-COSTA, A., GILLESSENKAESBACH, G., ZACKAI, E. H., ROMMENS, J. & MUENKE, M. (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genetics 22, 196-198.

    Google Scholar 

  • YAKOVLEV, P. I. (1959) Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies). Journal of Neuropathology and Experimental Neurology 18, 22-55.

    Google Scholar 

  • YOKOTA, A., OOTA, T. & MATSUKADO, Y. (1984) Dorsal cyst malformations. Part I. Clinical study and critical review of the definition of holoprosencephaly. Childs Brain 11, 320-341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Caviness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Kinsman, S., Makris, N. et al. Holoprosencephaly—Topologic variations in a Liveborn series: A general model based upon MRI analysis. J Neurocytol 33, 23–35 (2004). https://doi.org/10.1023/B:NEUR.0000029646.75645.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000029646.75645.9c

Keywords

Navigation