Skip to main content
Log in

Activity-dependent elimination of neuromuscular synapses

  • Published:
Journal of Neurocytology

Abstract

At developing neuromuscular synapses in vertebrates, different motor axon inputs to muscle fibers compete for maintenance of their synapses. Competition results in progressive changes in synaptic structure and strength that lead to the weakening and loss of some inputs, a process that has been called synapse elimination. At the same time, a single input is strengthened and maintained throughout adult life, consistently recruiting muscle fibers to contract even at rapid firing rates. Work over the last decade has led to an understanding of some of the cell biological mechanisms that underlie competition and how these culminate in synapse elimination. We discuss current ideas about how activity modulates neuromuscular synaptic competition, how competition leads to synapse loss, and how these processes are modulated by cell-cell signaling. A common feature of competition at neuromuscular as well as CNS synapses is that temporally correlated activity seems to slow or prevent competition, while uncorrelated activity seems to trigger or enhance competition. Important questions that remain to be addressed include how patterns of motor neuron activity affect synaptic strength, what is the temporal relationship between changes in synaptic strength and structure, and what cellular signals mediate synapse loss. Answers to these questions will expand our understanding of the mechanisms by which activity edits synaptic structure and function, writing permanent changes in neural circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • BALICE-GORDON, R. J., CHUA, C. K., NELSON, C. C. & LICHTMAN, J. W. (1993) Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron 11, 80–815.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J. & LICHTMAN, J. W. (1993) In vivo observations of pre-and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. Journal of Neuroscience 13, 83–855.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J. & LICHTMAN, J. W. (1994) Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 51–524.

    PubMed  Google Scholar 

  • BALICE-GORDON, R. J. & THOMPSON, W. J. (1988) Synaptic rearrangements and alterations in motor unit properties in neonatal rat extensor digitorum longus muscle. Journal of Physiology (London) 398, 19–210.

    Google Scholar 

  • BARBER, M. J. & LICHTMAN, J. W. (1999) Activity-driven synapse elimination leads paradoxically to domination by inactive neurons. Journal of Neuroscience 19, 997– 9985.

    PubMed  Google Scholar 

  • BARRY, J. A. & RIBCHESTER, R. R. (1995) Persistent polyneuronal innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block. Journal of Neuroscience 15, 632–6339.

    PubMed  Google Scholar 

  • BETZ, W. J., CHUA, M. & RIDGE, M. A. P. (1989) Inhibitory interactions between motoneurone terminals in neonatal rat lumbrical muscle. Journal of Physiology 417, 2–51.

    PubMed  Google Scholar 

  • BI, G. & POO, M.-M. (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annual Review of Neuroscience 24, 13–166.

    PubMed  Google Scholar 

  • BIXBY, J. L. (1981) Ultrastructural observations on synapse elimination in neonatal rabbit skeletal muscle. Journal of Neurocytology 10, 8–100.

    PubMed  Google Scholar 

  • BROWN, M. C., JANSEN, J. K. & VAN ESSEN, D. (1976) Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. Journal of Physiology 261, 38–422.

    PubMed  Google Scholar 

  • BUFFELLI, M., BUSETTO, G., CANGIANO, L. & CANGIANO, A. (2002) Perinatal switch from synchronous to asynchronous activity of motoneurons: Link with synapse elimination. Proceedings of the National Academy of Sciences USA 99, 1320–13205.

    Google Scholar 

  • BUSETTO, G., BUFFELLI, M., TOGNANA, E., BELLICO, F. & CANGIANO, A. (2000) Hebbian mechanisms revealed by electrical stimulation at developing rat neuromuscular junctions. Journal of Neuroscience 20, 68–695.

    PubMed  Google Scholar 

  • CALLAWAY, E. M., SOHA, J. M. & VAN ESSEN, D. C. (1987) Competition favouring inactive over active motor neurons during synapse elimination. Nature 328, 42–426.

    PubMed  Google Scholar 

  • CASH, S., DAN, Y., POO, M. & ZUCKER, R. (1996a) Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses. Neuron 16, 74–754.

    PubMed  Google Scholar 

  • CASH, S., ZUCKER, R. S. & POO, M.-M. (1996b) Spread of synaptic depression mediated by presynaptic cytoplasmic signalling. Science 272, 99–1001.

    PubMed  Google Scholar 

  • CHANG, Q., GONZALEZ, M., PINTER, M. J. & BALICE-GORDON, R. J. (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. Journal of Neuroscience 19, 1081–10828.

    PubMed  Google Scholar 

  • COHEN-CORY, S. (2002) The developing synapse: Construction and modulation of synaptic structures and circuits. Science 298, 77–776.

    PubMed  Google Scholar 

  • COLMAN, H., NABEKURA, J. & LICHTMAN, J. W. (1997) Alterations in synaptic strength preceding axon withdrawal. Science 275, 35–361.

    PubMed  Google Scholar 

  • CONNOLD, A. L., EVERS, J. V. & VRBOVA, G. (1986) Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle. Developmental Brain Research 28, 9–107.

    Google Scholar 

  • COPE, T. C. & PINTER, M. J. (1995) The size principle: Still working after all these years. News in Physiological Sciences 10, 28–286.

    Google Scholar 

  • COSTANZO, E. M., BARRY, J. A. & RIBCHESTER, R. R. (2000) Competition at silent synapses in reinnervated skeletal muscle. Nature Neuroscience 3, 69–700.

    PubMed  Google Scholar 

  • CREPEL, F., MARIANI, J. & DELHAYE-BOUCHAUD, N. (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. Journal of Neurobiology 7, 56–578.

    PubMed  Google Scholar 

  • CULICAN, S. M., NELSON, C. C. & LICHTMAN, J. W. (1998) Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes. Journal of Neuroscience 18, 495–4965.

    PubMed  Google Scholar 

  • DAI, Z. & PENG, H. B. (1998) Arole of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. Journal of Cell Biology 141, 161–1624.

    PubMed  Google Scholar 

  • DAN, Y. & POO, M. (1992) Hebbian depression of isolated neuromuscular synapses in vitro. Science 256, 157– 1573.

    PubMed  Google Scholar 

  • DUNAEVSKY, A. & CONNOR, E. A. (1995) Long-term maintenance of presynaptic function in the absence of target muscle fibers. Journal of Neuroscience 15, 613– 6144.

    PubMed  Google Scholar 

  • DUNAEVSKY, A. & CONNOR, E. A. (1998) Stability of frog motor nerve terminals in the absence of target muscle fibers. Developmental Biology 194, 6–71.

    PubMed  Google Scholar 

  • EKEN, T. (1998) Spontaneous electromyographic activity in adult rat soleus muscle. Journal of Neurophysiology 80, 36–376.

    PubMed  Google Scholar 

  • ENGLISH, A. W. & SCHWARTZ, G. (1995) Both basic fibroblast growth factor and ciliary neurotrophic factor promote the retention of polyneuronal innervation of developing skeletal muscle fibers. Developmental Biology 169, 5–64.

    PubMed  Google Scholar 

  • FENG, G., MELLOR, R. H., BERNSTEIN, M., KELLERPECK, C., NGUYEN, Q. T., WALLACE, M., NERBONNE, J. M., LICHTMAN, J. W. & SANES, J. R. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 4–51.

    PubMed  Google Scholar 

  • FLADBY, T. (1987) Postnatal loss of synaptic terminals in the normal mouse soleus muscle. Acta Physiologica Scandinavica 129, 22–238.

    PubMed  Google Scholar 

  • FLADBY, T. & JANSEN, J. K. (1987) Postnatal loss of synaptic terminals in the partially denervated mouse soleus muscle. Acta Physiologica Scandinavica 129, 23–246.

    PubMed  Google Scholar 

  • FU, W.-M. & POO, M.-M. (1991) ATP potentiates spontaneous transmitter release at developing neuromuscular synapses. Neuron 6, 83–843.

    PubMed  Google Scholar 

  • FULTON, B. P. & WALTON, K. (1986) Electrophysiological properties of neonatal rat motoneurones studied in vitro. Journal of Physiology 370, 65–678.

    PubMed  Google Scholar 

  • FUMAGALLI, G., BALBI, S., CANGIANO, A. & LOMO, T. (1990) Regulation of turnover and number of acetylcholine receptors at neuromuscular junctions. Neuron 4, 56–569.

    PubMed  Google Scholar 

  • GAN, W. B. & LICHTMAN, J. W. (1998) Synaptic segregation at the developing neuromuscular junction. Science 282, 150–1511.

    PubMed  Google Scholar 

  • GONZALEZ, M., RUGGIERO, F. P., CHANG, Q., SHI, Y. J., RICH, M. M., KRANER, S. & BALICE-GORDON, R. J. (1999) Disruption of TrkB-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions [see comments]. Neuron 24, 56–583.

    PubMed  Google Scholar 

  • HARISH, O. E. & POO, M. (1992) Retrograde modulation at developing neuromuscular synapses: Involvement of G protein and arachidonic acid cascade. Neuron 9, 120–1209.

    PubMed  Google Scholar 

  • HENNEMAN, E., SOMJEN, G. & CARPENTER, D. O. (1985) Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology 28, 56–580.

    Google Scholar 

  • HENNIG, R. & LOMO, T. (1985) Firing patterns of motor units in normal rats. Nature 314, 16–166.

    PubMed  Google Scholar 

  • HUBEL, D. H., WIESEL, T. N. & LEVAY, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London B 278, 37–409.

    Google Scholar 

  • JACKSON, H. & PARKS, T. N. (1982) Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. Journal of Neuroscience 2, 173–1743.

    PubMed  Google Scholar 

  • JORDAN, C. L. (1996a) Ciliary neurotrophic factor may act in target musculature to regulate developmental synapse elimination. Developmental Neuroscience 18, 18–198.

    PubMed  Google Scholar 

  • JORDAN, C. L. (1996b) Morphological effects of ciliary neurotrophic factor treatment during neuromuscular synapse elimination. Journal of Neurobiology 31, 2–40.

    PubMed  Google Scholar 

  • JORDAN, C. L., LETINSKY, M. S. & ARNOLD, A. P. (1989a) The role of gonadal hormones in neuromuscular synapse elimination in rats. I. Androgen delays the loss of multiple innervation in the levator ani muscle. Journal of Neurosciece 9, 22–238.

    Google Scholar 

  • JORDAN, C. L., LETINSKY, M. S. & ARNOLD, A. P. (1989b) The role of gonadal hormones in neuromuscular synapse elimination in rats. II. Multiple innervation persists in the adult levator ani muscle after juvenile androgen treatment. Journal of Neuroscience 9, 23–247.

    PubMed  Google Scholar 

  • JORDAN, C. L., LETINSKY, M. S. & ARNOLD, A. P. (1988) Synapse elimination occurs late in the hormonesensitive levator ani muscle of the rat. Journal of Neurobiology 19, 33–356.

    PubMed  Google Scholar 

  • KELLER-PECK, C. R., FENG, G., SANES, J. R., YAN, Q., LICHTMAN, J. W. & SNIDER, W. D. (2001) Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. Journal of Neuroscience 21, 613–6146.

    PubMed  Google Scholar 

  • KELLER-PECK, C. R., WALSH, M. K., GAN, W. B., FENG, G., SANES, J. R. & LICHTMAN, J. W. (2001) Asynchronous synapse elimination in neonatal motor units: Studies using GFP transgenic mice. Neuron 31, 38–394.

    PubMed  Google Scholar 

  • KIM, S., BUONANNO, A. & NELSON, P. G. (1998) Regulation of prothrombin, thrombin receptor, and protease nexin-1 expression during development and after denervation in muscle. Journal of Neuroscience Research 53, 30–311.

    PubMed  Google Scholar 

  • KOPP, D. M., P ERKEL, D. J. & BALICE-GORDON, R. J. (2000) Disparity in neurotransmitter release probability amongcompeting inputs during neuromuscular synapse elimination. Journal of Neuroscience 20, 877–8779.

    PubMed  Google Scholar 

  • KORNELIUSSEN, H. & JANSEN, J. K. (1976) Morphological aspects of the elimination of polyneuronal innervation of skeletal muscle fibres in newborn rats. Journal of Neurocytology 5, 59–604.

    PubMed  Google Scholar 

  • KWON, Y. W., ABBONDANZO, S. J., STEWART, C. L. & GURNEY, M. E. (1995) Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles. Journal of Neurobiology 28, 3–50.

    PubMed  Google Scholar 

  • LANUZA, M. A., G ARCIA, N., SANTAFE, M., G ONZALEZ, C. M., ALONSO, I., NELSON, P. G. & TOMAS, J. (2002) Pre-and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C. Journal of Neuroscience Research 67, 60–617.

    PubMed  Google Scholar 

  • LANUZA, M. A., GARCIA, N., SANTAFE, M., NELSON, P. G., FENOLL-BRUNET, M. R. & TOMAS, J. (2001) Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. Journal of Neuroscience Research 63, 33–340.

    PubMed  Google Scholar 

  • LEVAY, S., WIESEL, T. N. & HUBEL, D. H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology 191, –51.

    PubMed  Google Scholar 

  • LICHTMAN, J. W. (1977) The reorganization of synaptic connections in the rat submandibular ganglion during post-natal development. Journal of Physiology 273, 15–177.

    PubMed  Google Scholar 

  • LICHTMAN, J. W. & COLMAN, H. (2000) Synapse elimination and indelible memory. Neuron 25, 26–278.

    PubMed  Google Scholar 

  • LICHTMAN, J. W., WILKINSON, R. S. & RICH, M. M. (1985) Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 35–359.

    PubMed  Google Scholar 

  • LIOU, J.-C., YANG, R.-S. & FU, W.-M. (1997) Regulation of quantal secretion by neurotrophic factors at developing motoneurons in Xenopus cell cultures. Journal of Physiology 503, 12–139.

    PubMed  Google Scholar 

  • LIU, Y., FIELDS, R. D., FESTOFF, B. W. & NELSON, P. G. (1994a) Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proceedings of the National Academy of Sciences of the United States of America 91, 1030–10304.

    PubMed  Google Scholar 

  • LIU, Y., FIELDS, R. D., FITZGERALD, S., FESTOFF, B. W. & NELSON, P. G. (1994b) Proteolytic activity, synapse elimination, and the Hebb synapse. Journal of Neurobiology 25, 32–335.

    PubMed  Google Scholar 

  • LO, Y. & POO, M. (1991) Activity-dependent synaptic competition in vitro: Heterosynaptic suppression of developing synapses. Science 254, 101–1022.

    PubMed  Google Scholar 

  • LO, Y.-J., LIN, Y.-C., SANES, D. H. & POO, M.-M. (1994) Depression of developing neuromuscular synapses induced by repetitive postsynaptic depolarizations. Journal of Neuroscience 14, 469–4704.

    PubMed  Google Scholar 

  • LO, Y.-J. & POO, M.-M. (1994) Heterosynaptic suppression of developing neuromuscular synapses in culture. Journal of Neuroscience 14, 468–4693.

    PubMed  Google Scholar 

  • LOHOF, A. M., DELHAYE-BOUCHAUD, N. & MARIANI, J. (1996) Synapse elimination in the central nervous system: Functional significance and cellular mechanisms. Annual Reviews of Neuroscience 7, 8–101.

    Google Scholar 

  • LOHOF, A. M., IP, N. Y. & POO, M. (1993) Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 35– 353.

    PubMed  Google Scholar 

  • LU, B., FU, W.-M., GREENGARD, P. & POO, M.-M. (1993) Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junctions. Nature 363, 7–79.

    PubMed  Google Scholar 

  • MAGCHIELSE, T. & MEETER, E. (1986) The effect of neuronal activity on the competitive elimination of neuromuscular junctions in tissue culture. Developmental Brain Research 25, 21–220.

    Google Scholar 

  • NELSON, P. G., FIELDS, R. D., YU, C. & LIU, Y. (1993) Synapse elimination from the mouse neuromuscular junctions in vitro: A non-Hebbian activity-dependent process. Journal of Neurobiology 24, 151–1530.

    PubMed  Google Scholar 

  • NGUYEN, Q. T., PARSADANIAN, A. S., SNIDER, W. D. & LICHTMAN, J. W. (1998) Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 279, 172–1729.

    PubMed  Google Scholar 

  • O?BRIEN, R. A., OSTBERG, A. J. & VRBOVA, G. (1978) Observation on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. Journal of Physiology 282, 57–582.

    PubMed  Google Scholar 

  • O?BRIEN, R. A., OSTBERG, A. J. & VRBOVA, G. (1984) Protease inhibitors reduce the loss of nerve terminals induced by activity and calcium in developing rat soleus muscles in vitro. Neuroscience 12, 63–646.

    PubMed  Google Scholar 

  • OPPENHEIM, R. W., HOUENOU, L. J., PARSADANIAN, A. S., PREVETTE, D., SNIDER, W. D. & SHEN, L. (2000) Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: Regulation of programmed cell death among motoneuron subtypes. Journal of Neuroscience 20, 500–5011.

    PubMed  Google Scholar 

  • PERSONIUS, K. E. & BALICE-GORDON, R. J. (2001) Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses. Neuron 31, 39–408.

    PubMed  Google Scholar 

  • REDFERN, P. A. (1970) Neuromuscular transmission in new-born rats. Journal of Physiology 209, 70–709.

    PubMed  Google Scholar 

  • REYNOLDS, M. L. & WOOLF, C. J. (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. Journal of Neurocytology 21, 5–66.

    PubMed  Google Scholar 

  • RIBCHESTER, R. R. (1993) Co-existence and elimination of convergent motor nerve terminals in reinnervated and paralysed adult rat skeletal muscle. Journal of Physiology 466, 42–441.

    PubMed  Google Scholar 

  • RIBCHESTER, R. R. & TAXT, T. (1983) Motor unit size and synaptic competition in rat lumbrical muscles reinnervated by active and inactive motor axons. Journal of Physiology 344, 8–111.

    PubMed  Google Scholar 

  • RIBCHESTER, R. R., THOMSON, D., HADDOW, L. J. & DUSHKARYOV, Y. A. (1998) Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line-derived neurotrophic factor (GDNF). Journal of Physiology 512, 63–641.

    PubMed  Google Scholar 

  • RICH, M. M. & LICHTMAN, J. W. (1989a) Motor nerve terminal loss from degenerating muscle fibers. Neuron 3, 67–688.

    PubMed  Google Scholar 

  • RICH, M. M. & LICHTMAN, J. W. (1989b) In vivo visualization of pre-and postsynaptic changes during synapse elimination in reinnervatedmousemuscle. Journal of Neuroscience 9, 178–1805.

    PubMed  Google Scholar 

  • RIDGE, R. M. A. P. & BETZ, W. J. (1984) The effect of selective, chronic stimulation on motor unit size in developing rat muscle. Journal of Neuroscience 4, 261–2620.

    PubMed  Google Scholar 

  • RILEY, D. A. (1976) Multiple axon branches innervating single endplates of kitten soleus myofibers. Brain Research 110, 15–161.

    PubMed  Google Scholar 

  • RILEY, D. A. (1981) Ultrastructural evidence for axon retraction during the spontaneous elimination of polyneuronal innervation of rat soleus muscle. Journal of Neurocytology 10, 42–440.

    PubMed  Google Scholar 

  • ROSENTHAL, J. L. & TARASKEVICH, P. S. (1977) Reduction of multiaxonal innervation at the neuromuscular junction of the rat during development. Journal of Physiology 270, 29–310.

    PubMed  Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 38–442.

    PubMed  Google Scholar 

  • SNIDER, W. D. & LICHTMAN, J. W. (1996) Are neurotrophins synaptotrophins? Molecular and Cellular Neuroscience 7, 43–442.

    PubMed  Google Scholar 

  • SNIDER, W. D. (1994) Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77, 62–638.

    PubMed  Google Scholar 

  • SON, Y. J. & THOMPSON, W. J. (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 12–132.

    PubMed  Google Scholar 

  • STOOP, R. & POO, M.-M. (1995) Potentiation of transmitter release by ciliary neurotrophic factor requires somatic signaling. Science 267, 69–699.

    PubMed  Google Scholar 

  • STOOP, R. & POO, M.-M. (1996) Synaptic modulation by neurotrophic factors: Differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. Journal of Neuroscience 16, 325– 3264.

    PubMed  Google Scholar 

  • THOMPSON, W. (1983) Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Nature 302, 61–616.

    PubMed  Google Scholar 

  • THOMPSON, W. & JANSEN, J. K. S. (1977) The extent of sprouting of remaining motor units in partly denervated immature and adult rat soleus muscle. Neuroscience 2, 52–535.

    PubMed  Google Scholar 

  • THOMPSON, W., KUFFLER, D. P. & JANSEN, J. K. S. (1979) The effect of prolonged, reversible block of nerve impulses on the elimination of polyneuronal innervation of new-born rat skeletal muscle fibers. Neuroscience 4, 27–281.

    PubMed  Google Scholar 

  • TSIEN, J. Z. (2000) Linking Hebb's coincidence-detection to memory formation. Current Opinion in Neurobiology 10, 26–273.

    PubMed  Google Scholar 

  • WALSH, M. K. & LICHTMAN, J. W. (2003) In vivo timelapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 6– 73.

    PubMed  Google Scholar 

  • WALTON, K. D. & NAVARETTE, R. (1991) Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord. Journal of Physiology 433, 28–305.

    PubMed  Google Scholar 

  • WANG, T., XIE, K. & LU, B. (1995) Neurotrophins promote maturation of developing neuromuscular synapses. Journal of Neuroscience 15, 479–4805.

    PubMed  Google Scholar 

  • WANG, X.-H. & POO, M.-M. (1997) Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 19, 82–835.

    PubMed  Google Scholar 

  • WELLS, D. G., MCKECHNIE, B. A., KELKAR, S. & FALLON, J. R. (1999) Neurotrophins regulate agrin-induced postsynaptic differentiation. Proceedings of the National Academy of Sciences USA 96, 111– 1117.

    Google Scholar 

  • WERLE, M. J. & HERRERA, A. A. (1987) Synaptic competition and the persistence of polyneuronal innervation at frog neuromuscular junctions. Journal of Neurobiology 18, 37–389.

    PubMed  Google Scholar 

  • WERLE, M. J. & HERRERA, A. A. (1991) Elevated levels of polyneuronal innervation persist for as long as two years in reinnervated frog neuromuscular junctions. Journal of Neurobiology 22, 9–103.

    PubMed  Google Scholar 

  • WHITE, B., OSTERWALDER, T. & KESHISHIAN, H. (2001a) Molecular genetic approaches to the targeted suppression of neuronal activity. Current Biology 11, R104–R1053.

    PubMed  Google Scholar 

  • WHITE, B. H., OSTERWALDER, T. P., YOON, K. S., JOINER, W. J., WHIM, M. D., KACZMAREK, L. K. & KESHISHIAN, H. (2001b) Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel. Neuron 31, 69–711.

    PubMed  Google Scholar 

  • ZITO, K. (2003) The flip side of synapse elimination. Neuron 37, –2.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita J. Balice-Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, R.M., Balice-Gordon, R.J. Activity-dependent elimination of neuromuscular synapses. J Neurocytol 32, 777–794 (2003). https://doi.org/10.1023/B:NEUR.0000020623.62043.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020623.62043.33

Keywords

Navigation