Skip to main content
Log in

Proteomics for Protein Expression Profiling in Neuroscience

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

As the technology of proteomics moves from a theoretical approach to a practical reality, neuroscientists will have to determine the most appropriate applications for this technology. Neuroscientists will have to surmount difficulties particular to their research, such as limited sample amounts, heterogeneous cellular compositions in samples, and the fact that many proteins of interest are rare, hydrophobic proteins. This review examines protein isolation and protein fractionation and separation using two-dimensional electrophoresis (2-DE) and mass spectrometry proteomic methods. Methods for quantifying relative protein expression between samples (e.g., 2-DIGE, and ICAT) are also described. The coverage of the proteome, ability to detect membrane proteins, resource requirements, and quantitative reliability of different approaches is also discussed. Although there are many challenges in proteomic neuroscience, this field promises many rewards in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., and Williams, K. L. 1996. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng Rev. 13:19–50.

    PubMed  Google Scholar 

  2. Anderson, L. and Seilhamer, J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537.

    PubMed  Google Scholar 

  3. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19:1720–1730.

    PubMed  Google Scholar 

  4. Mullis, K. B. 1990. Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. (Paris) 48:579–582.

    Google Scholar 

  5. Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87:1663–1667.

    PubMed  Google Scholar 

  6. Zhang, H. T., Kacharmina, J. E., Miyashiro, K., Greene, M. I., and Eberwine, J. 2001. Protein quantification from complex protein mixtures using a proteomics methodology with single-cell resolution. Proc. Natl. Acad. Sci. USA 98:5497–5502.

    PubMed  Google Scholar 

  7. Sano, T., Smith, C. L., and Cantor, C. R. 1992. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122.

    PubMed  Google Scholar 

  8. Hynd, M. R., Lewohl, J. M., Scott, H. L., and Dodd, P. R. 2003. Biochemical and molecular studies using human autopsy brain tissue. J. Neurochem. 85:543–562.

    PubMed  Google Scholar 

  9. Fountoulakis, M., Hardmeier, R., Hoger, H., and Lubec, G. 2001. Postmortem changes in the level of brain proteins. Exp. Neurol. 167:86–94.

    PubMed  Google Scholar 

  10. Franzen, B., Yang, Y., Sunnemark, D., Wickman, M., Ottervald, J., Oppermann, M., and Sandberg, K. 2003. Dihydropyrimidinase related protein-2 as a biomarker for temperature and time dependent post mortem changes in the mouse brain proteome. Proteomics 3:1920–1929.

    PubMed  Google Scholar 

  11. Olivieri, E., Herbert, B., and Righetti, P. G. 2001. The effect of protease inhibitors on the two-dimensional electrophoresis pattern of red blood cell membranes. Electrophoresis 22:560–565.

    PubMed  Google Scholar 

  12. Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., and Grant, R. 2003. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 785:263–275.

    PubMed  Google Scholar 

  13. Chan, L. L., Lo, S. C., and Hodgkiss, I. J. 2002. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics 2:1169–1186.

    PubMed  Google Scholar 

  14. Lollo, B. A., Harvey, S., Liao, J., Stevens, A. C., Wagenknecht, R., Sayen, R., Whaley, J., and Sajjadi, F. G. 1999. Improved two-dimensional gel electrophoresis representation of serum proteins by using ProtoClear. Electrophoresis 20:854–859.

    PubMed  Google Scholar 

  15. Lorenz, P., Ruschpler, P., Koczan, D., Stiehl, P., and Thiesen, H. J. 2003. From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics 3:991–1002.

    PubMed  Google Scholar 

  16. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G. 2000. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3:661–669.

    PubMed  Google Scholar 

  17. Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R., and Postel, W. 1982. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods 6:317–339.

    PubMed  Google Scholar 

  18. Corbett, J. M., Dunn, M. J., Posch, A., and Gorg, A. 1994. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15:1205–1211.

    PubMed  Google Scholar 

  19. Gorg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. 1995. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16:1079–1086.

    PubMed  Google Scholar 

  20. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053.

    PubMed  Google Scholar 

  21. Gorg, A., Postel, W., Friedrich, C., Kuick, R., Strahler, J. R., and Hanash, S. M. 1991. Temperature-dependent spot positional variability in two-dimensional polypeptide patterns. Electrophoresis 12:653–658.

    PubMed  Google Scholar 

  22. Wildgruber, R., Harder, A., Obermaier, C., Boguth, G., Weiss, W., Fey, S. J., Larsen, P. M., and Gorg, A. 2000. Towards higher resolution: Two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21:2610–2616.

    PubMed  Google Scholar 

  23. Righetti, P. G., Wenisch, E., Jungbauer, A., Katinger, H., and Faupel, M. 1990. Preparative purification of human monoclonal antibody isoforms in a multicompartment electrolyzer with immobiline membranes. J. Chromatogr. 500:681–696.

    PubMed  Google Scholar 

  24. Herbert, B. and Righetti, P. G. 2000. A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis 21:3639–3648.

    PubMed  Google Scholar 

  25. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021.

    PubMed  Google Scholar 

  26. Klose, J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243.

    PubMed  Google Scholar 

  27. Rabilloud, T. 2000. Detecting proteins separated by 2-D gel electrophoresis. Anal. Chem. 72:48A–55A.

    PubMed  Google Scholar 

  28. Nishihara, J. C. and Champion, K. M. 2002. Quantitative evaluation of proteins in one-and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis 23:2203–2215.

    PubMed  Google Scholar 

  29. Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., and Dunn, M. J. 2000. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672.

    PubMed  Google Scholar 

  30. Fernandez-Patron, C., Castellanos-Serra, L., Hardy, E., Guerra, M., Estevez, E., Mehl, E., and Frank, R. W. 1998. Understanding the mechanism of the zinc-ion stains of biomacromolecules in electrophoresis gels: generalization of the reverse-staining technique. Electrophoresis 19:2398–2406.

    PubMed  Google Scholar 

  31. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262.

    PubMed  Google Scholar 

  32. Rabilloud, T., Strub, J. M., Luche, S., van Dorsselaer, A., and Lunardi, J. 2001. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1:699–704.

    PubMed  Google Scholar 

  33. Steinberg, T. H., Top, K. P. O., Berggren, K. N., Kemper, C., Jones, L., Diwu, Z. J., Haugland, R. P., and Patton, W. F. 2001. Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 1:841–855.

    PubMed  Google Scholar 

  34. Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., Schulenberg, B., Hendrickson, J., Beechem, J. M., Haugland, R. P., and Patton, W. F. 2003. Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3:1128–1144.

    PubMed  Google Scholar 

  35. Alban, A., David, S. O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Currie, I. 2003. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44.

    PubMed  Google Scholar 

  36. Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. 2001. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396.

    PubMed  Google Scholar 

  37. Westermeier, R. and Naven, T. 2002. Proteomics in practice. Wiley-VCH, Weinheim.

    Google Scholar 

  38. Unlu, M., Morgan, M. E., and Minden, J. S. 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077.

    PubMed  Google Scholar 

  39. Shaw, J., Rowlinson, R., Nickson, J., Stone, T., Sweet, A., Williams, K., and Tonge, R. 2003. Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195.

    PubMed  Google Scholar 

  40. Cutler, P., Heald, G., White, I. R., and Ruan, J. 2003. A novel approach to spot detection for two-dimensional gel electrophoresis images using pixel value collection. Proteomics 3:392–401.

    PubMed  Google Scholar 

  41. Panek, J. and Vohradsky, J. 1999. Point pattern matching in the analysis of two-dimensional gel electropherograms. Electrophoresis 20:3483–3491.

    PubMed  Google Scholar 

  42. Krapfenbauer, K., Fountoulakis, M., and Lubec, G. 2003. A rat brain protein expression map including cytosolic and enriched mitochondrial and microsomal fractions. Electrophoresis 24:1847–1870.

    PubMed  Google Scholar 

  43. Washburn, M. P., Wolters, D., and Yates, J. R., III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242–247.

    PubMed  Google Scholar 

  44. Siuzdak, G. 1996. Mass spectrometry for biotechnology. Academic Press, San Diego.

    Google Scholar 

  45. Liebler, D. C. 2002. Introduction to proteomics. Humana Press, Totowa, NJ.

    Google Scholar 

  46. Barber, M., Bordoli, R. S., Sedgwick, R. D., Tyler, A. N., and Bycroft, B. W. 1981. Fast atom bombardment mass spectrometry of bleomycin A2 and B2 and their metal complexes. Biochem. Biophys. Res. Commun. 101:632–638.

    PubMed  Google Scholar 

  47. Karas, M. and Hillenkamp, F. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–2301.

    PubMed  Google Scholar 

  48. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71.

    PubMed  Google Scholar 

  49. Emmett, M. R., Andren, P. E., and Caprioli, R. M. 1995. Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry. J. Neurosci. Methods 62:141–147.

    PubMed  Google Scholar 

  50. Wilm, M. and Mann, M. 1996. Analytical properties of the nano-electrospray ion source. Anal. Chem. 68:1–8.

    PubMed  Google Scholar 

  51. Witzmann, F. A., Fultz, C. D., Grant, R. A., Wright, L. S., Kornguth, S. E., and Siegel, F. L. 1999. Regional protein alterations in rat kidneys induced by lead exposure. Electrophoresis 20:943–951.

    PubMed  Google Scholar 

  52. Premstaller, A., Oberacher, H., Walcher, W., Timperio, A. M., Zolla, L., Chervet, J. P., Cavusoglu, N., van Dorsselaer, A., and Huber, C. G. 2001. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Anal. Chem. 73:2390–2396.

    PubMed  Google Scholar 

  53. Beck, J. L., Colgrave, M. L., Ralph, S. F., and Sheil, M. M. 2001. Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev. 20:61–87.

    PubMed  Google Scholar 

  54. Mann, M., Hendrickson, R. C., and Pandey, A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70:437–473.

    PubMed  Google Scholar 

  55. von Haller, P. D., Donohoe, S., Goodlett, D. R., Aebersold, R., and Watts, J. D. 2001. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics 1:1010–1021.

    PubMed  Google Scholar 

  56. Jonscher, K. R. and Yates, J. R., III. 1997. the quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal. Biochem. 244:1–15.

    PubMed  Google Scholar 

  57. Bienvenut, W. V., Deon, C., Pasquarello, C., Campbell, J. M., Sanchez, J. C., Vestal, M. L., and Hochstrasser, D. F. 2002. Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876.

    PubMed  Google Scholar 

  58. Morris, H. R., Paxton, T., Panico, M., McDowell, R., and Dell, A. 1997. A novel geometry mass spectrometer, the Q-TOF, for low-femtomole/attomole-range biopolymer sequencing. J. Protein Chem. 16:469–479.

    PubMed  Google Scholar 

  59. Marshall, A. G., Hendrickson, C. L., and Jackson, G. S. 1998. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17:1–35.

    PubMed  Google Scholar 

  60. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994–999.

    PubMed  Google Scholar 

  61. Zhou, H., Ranish, J. A., Watts, J. D., and Aebersold, R. 2002. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20:512–515.

    PubMed  Google Scholar 

  62. Kubota, K., Wakabayashi, K., and Matsuoka, T. 2003. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: Two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography. Proteomics 3:616–626.

    PubMed  Google Scholar 

  63. Schmidt, F., Donahoe, S., Hagens, K., Mattow, J., Schaible, U. E., Kaufmann, S. H., Aebersold, R., and Jungblut, P. R. 2003. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope coded affinity tag technology. Mol. Cell Proteomics 3:24–42.

    PubMed  Google Scholar 

  64. Hutchins, T. W. and Yip, T-T. 1993. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Common. Mass Spectrom. 7:576–580.

    Google Scholar 

  65. Merchant, M. and Weinberger, S. R. 2000. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21:1164–1177.

    PubMed  Google Scholar 

  66. Fung, E. T., Thulasiraman, V., Weinberger, S. R., and Dalmasso, E. A. 2001. Protein biochips for differential profiling. Curr. Opin. Biotechnol. 12:65–69.

    PubMed  Google Scholar 

  67. Reid, G., Gan, B. S., She, Y. M., Ens, W., Weinberger, S., and Howard, J. C. 2002. Rapid identification of probiotic lactobacillus biosurfactant proteins by ProteinChip tandem mass spectrometry tryptic peptide sequencing. Appl. Environ. Microbiol. 68:977–980.

    PubMed  Google Scholar 

  68. Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., and Gutstein, H. B. 2003. Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3:610–615.

    PubMed  Google Scholar 

  69. Mouledous, L., Hunt, S., Harcourt, R., Harry, J. L., Williams, K. L., and Gutstein, H. B. 2003. Proteomic analysis of immunostained, laser-capture microdissected brain samples. Electrophoresis 24:296–302.

    PubMed  Google Scholar 

  70. Xu, B. J., Caprioli, R. M., Sanders, M. E., and Jensen, R. A. 2002. Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 13:1292–1297.

    PubMed  Google Scholar 

  71. Schwartz, S. A., Reyzer, M. L., and Caprioli, R. M. 2003. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38:699–708.

    PubMed  Google Scholar 

  72. Stoeckli, M., Chaurand, P., Hallahan, D. E., and Caprioli, R. M. 2001. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7:493–496.

    PubMed  Google Scholar 

  73. Satoh, K., Takeuchi, M., Oda, Y., Deguchi-Tawarada, M., Sakamoto, Y., Matsubara, K., Nagasu, T., and Takai, Y. 2002. Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7:187–197.

    PubMed  Google Scholar 

  74. Pappin, D. J. 2003. Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol. Biol. 211:211–219.

    PubMed  Google Scholar 

  75. Mann, M., Hojrup, P., and Roepstorff, P. 1993. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22:338–345.

    PubMed  Google Scholar 

  76. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90:5011–5015.

    PubMed  Google Scholar 

  77. Zhang, W. and Chait, B. T. 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72:2482–2489.

    PubMed  Google Scholar 

  78. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567.

    PubMed  Google Scholar 

  79. Scheler, C., Lamer, S., Pan, Z., Li, X. P., Salnikow, J., and Jungblut, P. 1998. Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19:918–927.

    PubMed  Google Scholar 

  80. Spahr, C. S., Susin, S. A., Bures, E. J., Robinson, J. H., Davis, M. T., McGinley, M. D., Kroemer, G., and Patterson, S. D. 2000. Simplification of complex peptide mixtures for proteomic analysis: reversible biotinylation of cysteinyl peptides. Electrophoresis 21:1635–1650.

    Google Scholar 

  81. Griffiths, W. J., Jonsson, A. P., Liu, S., Rai, D. K., and Wang, Y. 2001. Electrospray and tandem mass spectrometry in biochemistry. Biochem. J. 355:545–561.

    PubMed  Google Scholar 

  82. Wu, C. C., MacCoss, M. J., Howell, K. E., and Yates, J. R. 2003. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 21:532–538.

    PubMed  Google Scholar 

  83. Petricoin, E. F., Zoon, K. C., Kohn, E. C., Barrett, J. C., and Liotta, L. A. 2002. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov. 1:683–695.

    PubMed  Google Scholar 

  84. Lopez, M. F. and Pluskal, M. G. 2003. Protein micro-and macroarrays: digitizing the proteome. J. Chromatogr. B: Analyt. Technol. Biomed. and Life Sci. 787:19–27.

    Google Scholar 

  85. Wilson, D. S. and Nock, S. 2003. Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl. 42:494–500.

    PubMed  Google Scholar 

  86. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., Petricoin III, E. F., and Liotta, L. A. 2001. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989.

    PubMed  Google Scholar 

  87. Haab, B. B., Dunham, M. J., and Brown, P. O. 2001. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2: RESEARCH0004.1–0004.13.

    Google Scholar 

  88. Fountoulakis, M., Juranville, J. F., Dierssen, M., and Lubec, G. 2002. Proteomic analysis of the fetal brain. Proteomics 2:1547–1576.

    PubMed  Google Scholar 

  89. Habeck, M. 2003. Brain proteome project launched. Nat. Med. 9:631.

    PubMed  Google Scholar 

  90. Zabel, C., Chamrad, D. C., Priller, J., Woodman, B., Meyer, H. E., Bates, G. P., and Klose, J. 2002. Alterations in the mouse and human proteome caused by Huntington's disease. Mol. Cell Proteomics 1:366–375.

    PubMed  Google Scholar 

  91. Krapfenbauer, K., Berger, M., Lubec, G., and Fountoulakis, M. 2001. Changes in the brain protein levels following administration of kainic acid. Electrophoresis 22:2086–2091.

    PubMed  Google Scholar 

  92. Schonberger, S. J., Edgar, P. F., Kydd, R., Faull, R. L. M., and Cooper, G. J. S. 2001. Proteomic analysis of the brain in Alzheimer's disease: molecular phenotype of a complex disease process. Proteomics 1:1519–1528.

    PubMed  Google Scholar 

  93. Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., Markesbery, W, R., and Butterfield, D. A. 2002. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J. Neurochem. 82:1524–1532.

    PubMed  Google Scholar 

  94. Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., Markesbery, W. R., and Butterfield, D. A. 8-15-2002. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxyterminal hydrolase L-1. Free Radic. Biol. Med. 33:562–571.

    PubMed  Google Scholar 

  95. Korolainen, M. A., Goldsteins, G., Alafuzoff, I., Koistinaho, J., and Pirttila, T. 2002. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 23:3428–3433.

    PubMed  Google Scholar 

  96. Graves, P. R. and Haystead, T. A. 2003. A functional proteomics approach to signal transduction. Recent Prog. Horm. Res. 58:1–24.

    PubMed  Google Scholar 

  97. Loughrey, Chen S., Huddleston, M. J., Shou, W., Deshaies, R. J., Annan, R. S., and Carr, S. A. 2002. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol. Cell Proteomics 1:186–196.

    PubMed  Google Scholar 

  98. Becamel, C., Alonso, G., Galeotti, N., Demey, E., Jouin, P., Ullmer, C., Dumuis, A., Bockaert, J., and Marin, P. 2002. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. EMBO J. 21:2332–2342.

    PubMed  Google Scholar 

  99. Santoni, V., Molloy, M., and Rabilloud, T. 2000. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070.

    PubMed  Google Scholar 

  100. Santoni, V., Kieffer, S., Desclaux, D., Masson, F., and Rabilloud, T. 2000. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344.

    PubMed  Google Scholar 

  101. Taylor, C. M. and Pfeiffer, S. E. 2003. Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis. Proteomics 3:1303–1312.

    PubMed  Google Scholar 

  102. Bae, S. H., Harris, A. G., Hains, P. G., Chen, H., Garfin, D. E., Hazell, S. L., Paik, Y. K., Walsh, B. J., and Cordwell, S. J. 2003. Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics 3:569–579.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Hemby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, W.M., Hemby, S.E. Proteomics for Protein Expression Profiling in Neuroscience. Neurochem Res 29, 1065–1081 (2004). https://doi.org/10.1023/B:NERE.0000023594.21352.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000023594.21352.17

Navigation