Skip to main content
Log in

Comparative Analysis of the Mechanisms Underlying Nifedipine-Induced Blockade of Three Subtypes of T-Type Ca2+ Channels

  • Published:
Neurophysiology Aims and scope

Abstract

We analyzed the effects of nifedipine on a family of recombinant low-threshold Ca2+ channels functionally expressed in Xenopus oocytes and formed by three different subunits (α1G, α1H, and α1I). The α1G and α1I channels demonstrated a low sensitivity to nifedipine even in high concentrations (IC50 = 98 and 243 μM, maximum blocking intensity Amax = 25 and 47%, respectively). At the same time, the above agent effectively blocked channels formed by the α1H-subunit (IC50 = 5 μM and Amax = 41%). The nifedipine-caused effects were voltage-dependent, and their changes depended on the initial state of the channel. In the case of α1G-subunits, the blockade was determined mostly by binding of nifedipine with closed channels, whereas in the cases of α1H- and α1I-subunits this resulted from binding of nifedipine with channels in the activated and inactivated states. The obtained data allow us to obtain estimates of the pharmacological properties of the above three subtypes of recombinant channels and, in the future, to compare these characteristics with the properties of low-threshold Ca2+ channels in native cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. S. Veselovskii and S. A. Fedulova, “Two types of calcium channels in the somatic membrane of spinal ganglia neurons of the rat,” Dokl. Akad. Nauk SSSR, 268, 747–756 (1983).

    Google Scholar 

  2. J. R. Huguenard, “Low-threshold calcium currents in central nervous system neurons,” Annu. Rev. Physiol., 58, 329–348 (1996).

    Google Scholar 

  3. N. Hagiwara, H. Irisawa, and M. Kemeyama, “Contribution of two types of calcium current to the pacemaker potentials in rabbit sinoatrial cells,” J. Physiol., 395, 233–253 (1988).

    Google Scholar 

  4. M. F. Rossier, M. M. Burnay, M. B. Valloton, et al., “Distinct functions of T-and L-type calcium channels during activation of bovine adrenal glomerulosa cells,” Endocrinology, 137, 4817–4826 (1996).

    Google Scholar 

  5. X. Xu and P. M. Best, “Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors,” Proc. Natl. Acad. Sci. USA, 87, 4655–4659 (1990).

    Google Scholar 

  6. C. Arnoult, R. A. Cardullo, J. R. Lemos, et al., “Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida,” Proc. Natl. Acad. Sci. USA, 93, No. 23, 13004–13009 (1996).

    Google Scholar 

  7. E. Tsakiridou, L. Bertollini, M. de Curtis, et al., “Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy,” J. Neurosci., 15, 3110–3117 (1995).

    Google Scholar 

  8. J. R. Huguenard and D. A. Prince, “Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects,” J. Neurosci., 14, No. 9, 5485–5502 (1994).

    Google Scholar 

  9. D. A. Self, K. Bian, S. K. Mishra, et al., “Stroke-prone SHR vascular muscle Ca2+ current amplitudes correlate with lethal increases in blood pressure,” J. Vascul. Res., 31, 359–366 (1994).

    Google Scholar 

  10. H. B. Nuss and S. R. Houser, “T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes,” Circ. Res., 73, No. 4, 777–782 (1993).

    Google Scholar 

  11. R. W. Tsien, D. Lipscombe, D. V. Madison, et al., “Multiple types of neuronal calcium channels and their selective modulation,” Trends Neurosci., 11, No. 10, 431–438 (1988).

    Google Scholar 

  12. P. G. Kostyuk, “Low voltage-activated calcium channels: achievements and problems,” Neuroscience, 92, 1157–1163 (1999).

    Google Scholar 

  13. S. O. Zhuravleva, P. G. Kostyuk, and Y. M. Shuba, “Subtypes of low voltage-activated Ca2+ channels in laterodorsal thalamic neurons: possible localization and physiological roles,” Pflügers Arch., 441, No. 6, 832–93 (2001).

    Google Scholar 

  14. L. L. Cribbs, J. H. Lee, J. Yang, et al., “Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family,” Circ. Res., 83, No. 1, 103–109 (1998).

    Google Scholar 

  15. J. H. Lee, A. N. Daud, L. L. Cribbs, et al., “Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family,” J. Neurosci., 19, No. 6, 1912–1921 (1999).

    Google Scholar 

  16. E. Perez-Reyes, L. L. Cribbs, A. Daud, et al., “Molecular characterization of a neuronal low-voltage-activated T-type calcium channel,” Nature, 391, No. 6670, 896–900 (1998).

    Google Scholar 

  17. J. H. Lee, J. C. Gomora, L. L. Cribbs, et al., “Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H,” Biophys. J., 77, No. 6, 3034–3042 (1999).

    Google Scholar 

  18. R. L. Martin, J. H. Lee, L. L. Cribbs, et al., “Mibefradil block of cloned T-type calcium channels,” J. Pharmacol. Exp. Ther., 295, No. 1, 302–308 (2000).

    Google Scholar 

  19. C. M. Santi, F. S. Cayabyab, K. G. Sutton, et al., “Differential inhibition of T-type calcium channels by neuroleptics,” J. Neurosci., 22, No. 2, 396–403 (2002).

    Google Scholar 

  20. V. N. Osipenko, V. G. Naidenov, P. G. Kostyuk, et al., “Blocking of cloned low-threshold Ca2+ channels by neuroleptic drugs,” Neirofiziologiya/Neurophysiology, 35, No. 1, 9–18 (2003).

    Google Scholar 

  21. E. Perez-Reyes, “Three for T: molecular analysis of the low-voltage-activated calcium channel family,” Cell Mol. Life Sci., 56, Nos. 7/8, 660–669 (1999).

    Google Scholar 

  22. M. Spedding and R. Paoletti, “Classification of calcium channels and the sites of action of drugs modifying channel function,” Pharmacol. Rev., 44, No. 3, 363–376 (1992).

    Google Scholar 

  23. B. P. Bean, C. J. Cohen, and R. W. Tsien, “Lidocaine block of cardiac sodium channels,” J. Gen. Physiol., 81, No. 5, 613–642 (1983).

    Google Scholar 

  24. K. S. Lee and R. W. Tsien, “Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells,” Nature, 302, No. 5911, 790–794 (1983).

    Google Scholar 

  25. K. Takahashi and N. Akaike, “Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurons,” Br. J. Pharmacol., 100, No. 4, 705–710 (1990).

    Google Scholar 

  26. C. Romanin, K. Seydl, H. Glossmann, et al., “The dihydropyridine niguldipine inhibits T-type Ca2+ currents in atrial myocytes,” Pflügers Arch., 420, Nos. 3/4, 410–412 (1992).

    Google Scholar 

  27. S. Richard, S. Diochot, J. Nargeot, et al., “Inhibition of T-type calcium currents by dihydropyridines in mouse embryonic dorsal root ganglion neurons,” Neurosci. Lett., 132, No. 2, 229–234 (1991).

    Google Scholar 

  28. W. Stengel, M. Jainz, and K. Andreas, “Different potencies of dihydropyridine derivatives in blocking T-type but not L-type Ca2+ channels in neuroblastoma-glioma hybrid cells,” Eur. J. Pharmacol., 342, Nos. 2/3, 339–345 (1998).

    Google Scholar 

  29. A. N. Tarasenko, P. G. Kostyuk, A. V. Eremin, et al., “Two types of low-voltage-activated Ca2+ channels in neurons of rat laterodorsal thalamic nucleus,” J. Physiol., 499 (Part 1), 77–86 (1997).

    Google Scholar 

  30. N. Akaike, P. G. Kostyuk, and Y. V. Osipchuk, “Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurons,” J. Physiol., 412, 181–195 (1989).

    Google Scholar 

  31. L. Perchenet, A. Benardeau, and E. A. Ertel, “Pharmacological properties of Ca(V)3.2, a low voltage-activated Ca2+ channel cloned from human heart,” Naunyn-Schmiedeberg's Arch. Pharmacol., 361, No. 6, 590–599 (2000).

    Google Scholar 

  32. P. P. Kumar, S. C. Stotz, R. Paramashivappa, et al., “Synthesis and evaluation of a new class of nifedipine analogs with T-type calcium channel blocking activity,” Mol. Pharmacol., 61, No. 3, 649–658 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcheglovitov, A.K., Zhelay, T.I., Kondratskii, A.P. et al. Comparative Analysis of the Mechanisms Underlying Nifedipine-Induced Blockade of Three Subtypes of T-Type Ca2+ Channels. Neurophysiology 36, 93–101 (2004). https://doi.org/10.1023/B:NEPH.0000042560.93321.8c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEPH.0000042560.93321.8c

Navigation