Skip to main content
Log in

Role of Endothelial Cell Ion Channels in the Resistance Artery Function

  • Published:
Neurophysiology Aims and scope

Abstract

Endothelium-dependent hyperpolarizing factor (EDHF) underlies nitric oxide and prostacyclin-independent arterial relaxation. As the influence of EDHF increases with decreasing artery size, it plays an important role in vascular regulation. Initially suggested to represent a diffusible factor, EDHF is now thought to represent a variable input in different arteries from a factor(s) and the spread of hyperpolarizing current from the endothelium to the smooth muscle. Key to unravelling this pathway has been the demonstration that hyperpolarization within the endothelium can be blocked using a combination of the KCa channel blockers, apamin and charibdotoxin. As a consequence, the relaxation of vascular smooth muscle, which represents the end point of the EDHF pathway, is blocked. This review discusses the evidence that a differential distribution of ion channels between the smooth muscle and endothelial cells underlies the EDHF pathway. Also, that a diffusible factor, which may well be K ions released by the endothelium, acts alongside the spread of hyperpolarization through myoendothelial gap junctions to explain EDHF-evoked smooth muscle relaxation. While the relative importance of each of these two components can vary between arteries, together they can explain the EDHF phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. G. Taylor and A. H. Weston, “Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium, ” Trends Pharmacol.Sci., 9, 272–274(1988).

    Google Scholar 

  2. T. B. Bolton, R. J. Lang, and T. Takewaki, “Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery, ” J.Physiol., 351, 549–572(1984).

    Google Scholar 

  3. G. Chen, H. Suzuki, and A. H. Weston, “Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels, ” Br.J.Pharmacol., 95, 1165–1174(1988).

    Google Scholar 

  4. E. V. Kilpatrick and T. M. Cocks, “Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery, ” Br.J.Pharmacol., 112, 557–565(1994).

    Google Scholar 

  5. C. J. Garland and G. A. McPherson, “Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery, ” Br.J.Pharmacol., 105, 429–435(1992).

    Google Scholar 

  6. G. J. Waldron and C. J. Garland, “Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery, ” Br.J.Pharmacol., 112, 831–836(1994).

    Google Scholar 

  7. T. Nagao, S. Illiano, and P. M. Vanhoutte, “Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats, ” Am.J.Physiol., 263, H1090–H1094 (1992).

    Google Scholar 

  8. H. Shimokawa, H. Yasutake, K. Fujii, et al., “The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation, ” J.Cardiovasc.Pharmacol., 28, 703–711(1996).

    Google Scholar 

  9. J. J. Hwa, L. Ghibaudi, P. Williams, et al., “Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed, ” Am.J.Physiol., 266, H952–H958 (1994).

    Google Scholar 

  10. H. Nilsson, P. E. Jensen, and M. J. Mulvany, “Minor role for direct adrenoceptor-mediated calcium entry in rat mesenteric small arteries, ” J.Vascul.Res., 31, 314–321(1994).

    Google Scholar 

  11. M. H. Laughlin, J. R. Turk, W. G. Schrage, et al., “Influence of coronary artery diameter on eNOS protein content, ” Am.J.Physiol., 284, H1307–H1312 (2003).

    Google Scholar 

  12. L. Olmos, J. V. Mombouli, S. Illiano, et al., “cGMP mediates the desensitization to bradykinin in isolated canine coronary arteries, ” Am.J.Physiol., 268, H865–H870 (1995).

    Google Scholar 

  13. J. Bauersachs, R. Popp, M. Hecker, et al., “Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor, ” Circulation, 94, 3341–3347(1996).

    Google Scholar 

  14. A. I. McCulloch, F. E. Bottrill, M. D. Randall, et al., “Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed, ” Br.J.Pharmacol., 120, 1431–1438(1997).

    Google Scholar 

  15. M. P. Doyle and B. R. Duling, “Acetylcholine induces conducted vasodilation by nitric oxide-dependent and-independent mechanisms, ” Am.J.Physiol., 272, H1364–H1371 (1997).

    Google Scholar 

  16. B. Hoepfl, B. Rodenwaldt, U. Pohl, et al., “EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles, ” Am.J.Physiol., 283, H996–H1004 (2002).

    Google Scholar 

  17. R. Busse, G. Edwards, M. Feletou, et al., “EDHF: bringing the concepts together, ” Trends Pharmacol.Sci., 23, 374–380(2002).

    Google Scholar 

  18. M. Feletou and P. M. Vanhoutte, “Endothelium-dependent hyperpolarization of canine coronary smooth muscle, ” Br.J.Pharmacol., 93, 515–524 (1988).

    Google Scholar 

  19. K. Kauser, W. J. Stekiel, G. Rubanyi, et al., “Mechanism of action of EDRF on pressurized arteries: effect on K+ conductance, ” Circ.Res., 65, 199–204(1989).

    Google Scholar 

  20. G. Chen, Y. Yamamoto, K. Miwa, et al., “Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances, ” Am.J.Physiol., 260, H1888–H1892 (1991).

    Google Scholar 

  21. R. Popp, J. Bauersachs, M. Hecker, et al., “A transferable, beta-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells, ” J.Physiol., 497, Part 3, 699–709(1996).

    Google Scholar 

  22. F. Plane, M. Holland, G. J. Waldron, et al., “Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries, ” Br.J.Pharmacol., 121, 1509–1511(1997).

    Google Scholar 

  23. W. B. Campbell, D. Gebremedhin, P. F. Pratt, et al., “Identification of epoxyeicosatrienoic acids as endotheliumderived hyperpolarizing factors, ” Circ.Res., 78, 415–423 (1996).

    Google Scholar 

  24. Y. Yamamoto, K. Imaeda, and H. Suzuki, “Endotheliumdependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles, ” J.Physiol., 514, Part 2, 505–513(1999).

    Google Scholar 

  25. Y. Yamamoto, M. F. Klemm, F. R. Edwards, et al., “Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles, ” J.Physiol., 535, 181–195(2001).

    Google Scholar 

  26. H. A. Coleman, M. Tare, and H. C. Parkington, “K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea pig, rat and human blood vessels, ” J.Physiol., 531, 359–373(2001).

    Google Scholar 

  27. G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control, ” Circ.Res., 87, 474–479(2000).

    Google Scholar 

  28. S. L. Sandow and C. E. Hill, “Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endotheliumderived hyperpolarizing factor-mediated responses, ” Circ. Res., 86, 341–346(2000).

    Google Scholar 

  29. G. Edwards, C. Thollon, M. J. Gardener, et al., “Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery, ” Br.J.Pharmacol., 129, 1145–1154(2000).

    Google Scholar 

  30. S. L. Sandow, M. Tare, H. A. Coleman, et al., “Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor, ” Circ.Res., 90, 1108–1113(2002).

    Google Scholar 

  31. T. L. Little, J. Xia, and B. R. Duling, “Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall, ” Circ.Res., 76, 498–504 (1995).

    Google Scholar 

  32. J. Beny, “Electrical coupling between smooth muscle cells and endothelial cells in pig coronary arteries, ” Pflügers Arch., 433, 364–367(1997).

    Google Scholar 

  33. J. L. Beny, P. Zhu, and I. O. Haefliger, “Lack of bradykinin-induced smooth muscle cell hyperpolarization despite heterocellular dye coupling and endothelial cell hyperpolarization in porcine ciliary artery, ” J.Vascul.Res., 34, 344–350(1997).

    Google Scholar 

  34. A. T. Chaytor, W. H. Evans, and T. M. Griffith, “Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries, ” J.Physiol., 508, Part 2, 561–573(1998).

    Google Scholar 

  35. T. M. Griffith, A. T. Chaytor, H. J. Taylor, et al., “cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions, ” Proc.Natl.Acad.Sci.USA, 99, 6392–6397(2002).

    Google Scholar 

  36. G. J. Waldron and C. J. Garland, “Effect of potassium channel blockers on L-NAME insensitive relaxations in rat small mesenteric arteries, ” Can.J.Physiol.Pharmacol., 72, 115(1994).

    Google Scholar 

  37. C. Corriu, M. Feletou, E. Canet, et al., “Endotheliumderived factors and hyperpolarization of the carotid artery of the guinea pig, ” Br.J.Pharmacol., 119, 959–964(1996).

    Google Scholar 

  38. P. M. Zygmunt and E. D. Hogestatt, “Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery, ” Br.J.Pharmacol., 117, 1600–1606(1996).

    Google Scholar 

  39. T. Chataigneau, M. Feletou, J. Duhault, et al., “Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea-pig carotid artery, ” Br.J.Pharmacol., 123, 574–580(1998).

    Google Scholar 

  40. R. Busse, H. Fichtner, A. Luckhoff, et al., “Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells, ” Am.J.Physiol., 255, H965–H969 (1988).

    Google Scholar 

  41. F. Plane and C. J. Garland, “Influence of contractile agonists on the mechanism of endothelium-dependent relaxation in rat isolated mesenteric artery, ” Br.J.Pharmacol., 119, 191–193(1996).

    Google Scholar 

  42. T. M. Ishii, C. Silvia, B. Hirschberg, et al., “A human intermediate conductance calcium-activated potassium channel, ” Proc.Natl.Acad.Sci.USA, 94, 11651–11656 (1997).

    Google Scholar 

  43. M. Lazdunski, M. Fosset, M. Hughes, et al., “The apaminsensitive Ca2+-dependent K+ channel molecular properties, differentiation and endogenous ligands in mammalian brain, ” Biochem.Soc.Symp., 50, 31–42(1985).

    Google Scholar 

  44. P. M. Zygmunt, G. Edwards, A. H. Weston, et al., “Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery, ” Br.J.Pharmacol., 121, 141–149(1997).

    Google Scholar 

  45. D. K. Mistry and C. J. Garland, “Characteristics of single, large-conductance calcium-dependent potassium channels (BKCa) from smooth muscle cells isolated from the rabbit mesenteric artery, ” J.Membr.Biol., 164, 125–138(1998).

    Google Scholar 

  46. S. M. Marchenko and S. O. Sage, “Properties of the ionic conductance responsible for vasodilator-evoked hyperpolarization in endothelium of intact rat aorta, ” J.Physiol., 480P, 135(1994).

    Google Scholar 

  47. S. M. Marchenko and S. O. Sage, “Calcium-activated potassium channels in endothelium of intact rat aorta, ” FASEB J., 9, A842(1995).

    Google Scholar 

  48. S. M. Marchenko and S. O. Sage, “Calcium-activated potassium channels in the endothelium of intact rat aorta, ” J.Physiol., 492, 53–60(1996).

    Google Scholar 

  49. G. Edwards, K. A. Dora, M. J. Gardener, et al., “K+ is an endothelium-derived hyperpolarizing factor in rat arteries, ” Nature, 396, 269–272 (1998).

    Google Scholar 

  50. G. Edwards, C. Thollon, M. J. Gardener, et al., “Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery, ” Br.J.Pharmacol., 129, 1145–1154(2000).

    Google Scholar 

  51. S. D. Walker, K. A. Dora, N. T. Ings, et al., “Activation of endothelial cell IKCa with 1–ethyl-2–benzimidazolinone evokes smooth muscle hyperpolarization in rat isolated mesenteric artery, ” Br.J.Pharmacol., 134, 1548–1554 (2001).

    Google Scholar 

  52. P. Ghisdal and N. Morel, “Cellular target of voltage and calcium-dependent K+ channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery, ” Br.J.Pharmacol., 134, 1021–1028(2001).

    Google Scholar 

  53. H. Wulff, M. J. Miller, W. Hansel, et al., “Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant, ” Proc.Natl.Acad.Sci.USA, 97, 8151–8156 (2000).

    Google Scholar 

  54. I. Eichler, J. Wibawa, I. Grgic, et al., “Selective blockade of endothelial Ca2+-activated small-and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation, ” Br.J.Pharmacol., 138, 594–601(2003).

    Google Scholar 

  55. J. M. Hinton and P. D. Langton, “Inhibition of EDHF by two new combinations of K+-channel inhibitors in rat isolated mesenteric arteries, ” Br.J.Pharmacol., 138, 1031–1035(2003).

    Google Scholar 

  56. J. L. Beny and O. Schaad, “An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries, ” Br.J.Pharmacol., 131, 965–973 (2000).

    Google Scholar 

  57. E. Bussemaker, C. Wallner, B. Fisslthaler, et al., “The Na-K-ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar artery, ” Br.J.Pharmacol., 137, 647–654(2002).

    Google Scholar 

  58. D. Savage, J. Perkins, C. Hong Lim, et al., “Functional evidence that K+ is the non-nitric oxide, non-prostanoid endothelium-derived relaxing factor in rat femoral arteries, ” Vascul.Pharmacol., 40, 23–28(2003).

    Google Scholar 

  59. S. Nelli, W. S. Wilson, H. Laidlaw, et al., “Evaluation of potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coronary artery, ” Br.J.Pharmacol., 139, 982–988(2003).

    Google Scholar 

  60. J. F. Quignard, M. Feletou, C. Thollon, et al., “Potassium ions and endothelium-derived hyperpolarizing factor in guinea pig carotid and porcine coronary arteries, ” Br.J. Pharmacol., 127, 27–34(1999).

    Google Scholar 

  61. J. M. Doughty, J. P. Boyle, and P. D. Langton, “Potassium does not mimic EDHF in rat mesenteric arteries, ” Br.J. Pharmacol., 130, 1174–1182(2000).

    Google Scholar 

  62. P. S. Lacy, G. Pilkington, R. Hanvesakul, et al., “Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries, ” Br.J.Pharmacol., 129, 605–611(2000).

    Google Scholar 

  63. K. A. Dora and C. J. Garland, “Properties of smooth muscle hyperpolarization and relaxation to K+ in the rat isolated mesenteric artery, ” Am.J.Physiol., 280, H2424–H2429 (2001).

    Google Scholar 

  64. G. R. Richards, A. H. Weston, M. P. Burnham, et al., “Suppression of K+-induced hyperpolarization by phenylephrine in rat mesenteric artery: relevance to studies of endothelium-derived hyperpolarizing factor, ” Br.J.Pharmacol., 134, 1–5(2001).

    Google Scholar 

  65. K. A. Dora, N. T. Ings, and C. J. Garland, “KCa channel blockers reveal hyperpolarization and relaxation to K+ in rat isolated mesenteric artery, ” Am.J.Physiol., 283, H606–H614 (2002).

    Google Scholar 

  66. A. H. Weston, G. R. Richards, M. P. Burnham, et al., “K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases, ” Br.J. Pharmacol., 136, 918–926(2002).

    Google Scholar 

  67. M. Dawes, C. Sieniawska, T. Delves, et al., “Barium reduces resting blood flow and inhibits potassium-induced vasodilation in the human forearm, ” Circulation, 105, 1323–1328(2002).

    Google Scholar 

  68. B. Fisslthaler, R. Popp, L. Kiss, et al., “Cytochrome P450 2C is an EDHF synthase in coronary arteries, ” Nature, 401, 493–497(1999).

    Google Scholar 

  69. R. Popp, R. P. Brandes, G. Ott, et al., “Dynamic modulation of interendothelial gap junctional communication by 11,12–epoxyeicosatrienoic acid, ” Circ.Res., 90, 800–806(2002).

    Google Scholar 

  70. B. G. Hoebel, G. M. Kostner, and W. F. Graier, “Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells, ” Br.J.Pharmacol., 121, 1579–1588(1997).

    Google Scholar 

  71. A. Baron, M. Frieden, and J. L. Beny, “Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells, ” J.Physiol., 504, Part 3, 537–543(1997).

    Google Scholar 

  72. P. L. Li and W. B. Campbell, “Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein, ” Circ.Res., 80, 877–884(1997).

    Google Scholar 

  73. R. Popp, I. Fleming, and R. Busse, “Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance, ” Circ.Res., 82, 696–703(1998).

    Google Scholar 

  74. H. Miura, J. J. Bosnjak, G. Ning, et al., “Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles, ” Circ.Res., 92, 31–40(2003).

    Google Scholar 

  75. T. Matoba, H. Shimokawa, M. Nakashima, et al., “Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice, ” J.Clin.Invest., 106, 1521–1530 (2000).

    Google Scholar 

  76. R. S. Barlow and R. E. White, “Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity, ” Am.J.Physiol., 275, H1283–H1289 (1998).

    Google Scholar 

  77. S. D. Chauhan, H. Nilsson, A. Ahluwalia, et al., “Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor, ” Proc.Natl.Acad.Sci.USA, 100, 1426–1431(2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Garland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garland, C.J. Role of Endothelial Cell Ion Channels in the Resistance Artery Function. Neurophysiology 35, 161–168 (2003). https://doi.org/10.1023/B:NEPH.0000008775.00302.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEPH.0000008775.00302.6e

Navigation