Skip to main content
Log in

Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cone snails (Conidae) are marine predators with some extraordinary features. Their venom contains a hundred or more peptides that target numerous ion channels and receptors in mammals, including several that are involved in disease. ω-Conotoxins from fish hunting snails are 24–27 residue peptides with a rigid 4-loop cysteine framework that target the N-type voltage-gated calcium channel (VGCC). Two ω-conotoxins, MVIIA and CVID are currently in clinical development for chronic pain management (Ziconotide or Prialt, and AM336, respectively). In an attempt to develop small molecule equivalents of CVID, we defined the Cα–Cβ vectors of the residues believed to be important for binding to the N-type VGCC. Using these vectors, we undertook a virtual screening of virtual libraries approach to identify compounds that matched the pharmacophore. Cyclic pentapeptides containing residues of loop 2 of CVID, with one or more being a D-amino acid were designed and synthesised and were found to be active at the N-type VGCC (IC50∼ 20 μM). Agreeing with the specificity profile of CVID, molecules were inactive at the P/Q-type VGCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norton, R. S. and Pallaghy, P. K., The cystine knot structure of ion channel toxins and related polypeptides, Toxicon., 36 (1998) 1573–1583.

    PubMed  Google Scholar 

  2. Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., Mena, E. E., Woodward, S. R., Hillyard, D. R. and Cruz, L. J., Diversity of Conus neuropeptides, Science, 249 (1990) 257–263.

    PubMed  Google Scholar 

  3. Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R. and Cruz, L. J., Conotoxins, J. Biol. Chem., 266 (1991) 22067–22070.

    PubMed  Google Scholar 

  4. Miljanich, G. P. and Ramachandran, J., Antagonists of neuronal calcium channels: Structure, function, and therapeutic implications, Annu. Rev. Pharmacol. Toxicol., 35 (1995) 707–734.

    PubMed  Google Scholar 

  5. Olivera, B. M., Miljanich, G. P., Ramachandran, J. and Adams, M. E., Calcium channel diversity and neurotransmitter release: The ω-conotoxins and the ω-agatoxins, Ann. Rev. Biochem., 63 (1994) 823–867.

    PubMed  Google Scholar 

  6. Pringle, A. K., Benham, C. D., Sim, L., Kennedy, J., Iannotti, F. and Sundstrom, L. E., Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures, Stroke, 27 (1996) 2124–2130.

    PubMed  Google Scholar 

  7. Miljanich, G. P., Bowersox, S. S., Fox, A. F., Valentino, K. L. and Yamashiro, D. H., Compositions for delayed treatement of ischemia-related neuronal damage, PCT/US96 09766; Classification, C07K 7/10, A61K 37/02, 1993.

  8. Lewis, R. J., Nielsen, K. J., Craik, D. J., Loughnan, M. L., Adams, D. A., Sharpe, I. A., Luchian, T., Adams, D. J., Bond, T., Thomas, L., Jones, A., Matheson, J. L., Drinkwater, R., Andrews, P. R. and Alewood, P. F., Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes, J. Biol. Chem., 275 (2000) 35335–35344.

    PubMed  Google Scholar 

  9. Cousins, M. J., Cjoucke, R. C., Cher, C. M., Brooker, C. D., Amor, P. E. and Crump, D. E., A Phase I Clinical Trial of AM336, a Novel N-type Calcium Channel Blocker, 10th World Congress of Pain, IASP Press, 2002, p. 200.

  10. Smith, M. T., Cabot, P. J., Ross, F. B., Robertson, A. D. and Lewis, R. J., The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices, Pain, 96 (2002) 119–127.

    PubMed  Google Scholar 

  11. Wright, C. E., Robertson, A. D., Whorlow, S. L. and Angus, J. A., Cardiovascular and autonomic effects of ω-conotoxins MVIIA and CVID in conscious rabbits and isolated tissue assays, Br. J. Pharmacol., 131 (2000) 1325–1336.

    PubMed  Google Scholar 

  12. Penn, R. D. and Paice, J. A., Adverse effects associated with the intrathecal administration of ziconotide, Pain, 85 (2000) 291–296.

    PubMed  Google Scholar 

  13. Flinn, J. P., Pallaghy, P. K., Lew, M. J., Murphy, R., Angus, J. A. and Norton, R. S. Roles of key functional groups in ω-conotoxin GVIA synthesis, structure and functional assay of selected peptide analogues, Eur. J. Biochem., 262 (1999) 447–455.

    PubMed  Google Scholar 

  14. Guo, Z.-X., Cammidge, A. N. and Horwell, D. C. Dendroid peptide structural mimetics of ω-conotoxin MVIIA based on a 2(1H)-quinolinone core, Tetrahedron, 56 (2000) 5169–5157.

    Google Scholar 

  15. Menzler, S., Bikker, J. A. and Horwell, D. C., Synthesis of a non-peptide analogue of omega-conotoxin MVIIA, Tet. Lett., 39 (1998) 7619–7622.

    Google Scholar 

  16. Menzler, S., Bikker, J. A., Suman-Chauhan, N. and Horwell, D. C., Design and biological evaluation of non-peptide analogues of omegaconotoxin MVIIA, Bioorg. Med. Chem. Lett., 10 (2000) 345–347.

    PubMed  Google Scholar 

  17. Merkler, D. J. C-terminal amidated peptides: Production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity, Enzyme Microb. Technol., 16 (1994) 450–456.

    PubMed  Google Scholar 

  18. Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. and Mulder, R. J., Design and synthesis of type-III mimetics of ω-conotoxin GVIA, J. Comput. Aided Mol. Des., 15 (2002) 1119–1136.

    Google Scholar 

  19. Pallaghy, P. K. and Norton, R. S., The cyclic contryphan motif CPxXPXC, a robust scaffold potentially useful as an ω-conotoxin mimic, Biopolymers, 54 (2000) 173–179.

    PubMed  Google Scholar 

  20. Cohan, S. L., Redmond, D. J., Chen, M., Wilson, D. and Cyr, P., Flunarizine blocks elevation of free cytosolic calcium in synaptosomes following sustained depolarization, J. Cereb. Blood Flow Metab., 13 (1993) 947–954.

    PubMed  Google Scholar 

  21. Grantham, C. J., Main, M. J. and Cannell, M. B., Fluspirilene block N-type calcium current in NGF-differentiated PC12 cells, Br. J. Pharmacol., 111 (1994) 483–488.

    PubMed  Google Scholar 

  22. Yuen, P.-W., Schelkun, R. M., Szoke, B. and Tarczy-Hornoch, K., Synthesis and structure-activity relationaship of substituted 1,2,3,4-tetrahydroisoquinolines as N-type calcium channel blockers, Bioorg. Med. Chem. Lett., 8 (1998) 245–2418.

    Google Scholar 

  23. Uneyama, H., Takahara, A., Dohmoto, H., Yoshimoto, R., Inoue, K. and Akaike, N., Blockade of N-type Ca 2+ current by cilnidipine (FRC-8653) in acutely dissociatd rat sympathetic neurones, Br. J. Pharmacol., 122 (1997) 37–42.

    PubMed  Google Scholar 

  24. Fujii, S., Kameyama, K., Hosono, M., Hayashi, Y. and Kitamura, K., Effect of cilnidipine, a novel dihydropyridine Ca 2+-channel antagonist, on N-type Ca 2+ channel in rat dorsal root ganglia neurons, J. Pharmacol. Exper. Thearap., 280 (1997) 1184–1191.

    Google Scholar 

  25. Seko, T., Kato, M., Kohno, H., Ono, S., Hashimura, K., Takimizu, H., Nakai, K., Maegawa, H., Katsube, N. and Toda, M., Structure-activity study and analgesic efficacy of amino acid derivatives as N-type calcium channel blockers, Bioorg. Med. Chem. Lett., 11 (2001) 2067–2070.

    PubMed  Google Scholar 

  26. Seko, T., Kato, M., Kohno, H., Ono, S., Hashimura, K., Takenobu, Y., Takimizu, H., Nakai, K., Maegawa, H., Katsube, N. and Toda, M., L-cysteine based N-type calcium channel blockers: Structure-activity relationships of the C-terminal lipophilic moiety, and oral analgesic efficacy in rat pain models, Bioorg. Med. Chem. Lett., 12 (2002) 2267–2269.

    PubMed  Google Scholar 

  27. Seko, T., Kato, M., Kohno, H., Ono, S., Hashimura, K., Takimizu, H., Nakai, K., Maegawa, H., Katsube, N. and Toda, M., Structure-activity study of L-cysteine-based N-type calcium channel blockers: Optimization of N-and C-terminal substituents, Bioorg. Med. Chem. Lett., 12 (2002) 915–918.

    PubMed  Google Scholar 

  28. Lukyanetz, E. A., Shkryl, V. M. and Kostyuk, P. G., Selective blockade of N-type calcium channels by levetiracetam, Epilepsia, 43 (2002) 9–18.

    Google Scholar 

  29. Song, Y., Bowersox, S. S., Connor, D. T., Dooley, D. J., Lotarski, S. M., Malone, T., Miljanich, G., Millerman, E., Rafferty, M. F., Rock, D., Roth, B. D., Schmidt, J., Stoehr, S., Szoke, B. G., Taylor, C., Vartanian, M. and Wang, Y. X. (S)-4-Methyl-2-(methylamino)pentanoic acid [4,4-bis(4-fluorophenyl)butyl]amide hydrochloride, a novel calcium channel antagonist, is efficacious in several animal models of pain, J.Med. Chem., 43 (2000) 3474–3477.

    PubMed  Google Scholar 

  30. Nielsen, K. J., Schroeder, T. and Lewis, R. J. Structure-activity relationship of ω-conotoxins at the N-type voltage-sensitive calcium channels, J. Mol. Recogn., 13 (2000) 1–16.

    Google Scholar 

  31. Pin, J. P. and Bockaert, J., ω-Conotoxin GVIA and dihydropyridines discriminate two types of Ca 2+ channels involved in GABA release from striatal neurons in culture, Eur. J. Pharmacol., 188 (1990) 81–84.

    PubMed  Google Scholar 

  32. Feng, Z. P., Hamid, J., Doering, C., Bosey, G. M., Snutch, T. P. and Zamponi, G. W. Residue Gly1326 of the N-type calcium channel α 1B subunit controls reversibility of ω-conotoxin GVIA and MVIIA block, J. Biol. Chem., 276 (2001) 15728–15735.

    PubMed  Google Scholar 

  33. Ellinor, P. T., Zhang, J. F., Horne, W. A. and Tsien, R. W., Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin, Nature, 372 (1994) 272–275.

    PubMed  Google Scholar 

  34. Doughty, S. W., Blaney, F. E. and Richards, W. G., Models of ion pores in N-type voltage-gated calcium channels, J. Mol. Graph., 13 (1995) 342–348.

    PubMed  Google Scholar 

  35. Doughty, S. W., Blaney, F. E., Orlek, B. S. and Richards, W. G., A molecular mechanism for toxin block in N-type calcium channels, Prot. Eng., 11 (1998) 95–99.

    Google Scholar 

  36. McDonough, S. I., Swartz, K. J., Mintz, I. M., Boland, L. M. and Bean, B. P., Inhibition of calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC, J. Neurosci., 16 (1996) 2612–2623.

    PubMed  Google Scholar 

  37. Woppmann, A., Ramachandran, J. and Miljanich, G. P., Calcium channel subtypes in rat brain: Biochemical characterization of the high-affinity receptors for ω-conopeptides SNX-230 (synthetic MVIIC), SNX-183 (SVIB), and SNX-111 (MVIIA), Mol. Cell Neurosci., 5 (1994) 350–357.

    PubMed  Google Scholar 

  38. Kim, J. I., Takahashi, M., Ohtake, A., Wakamiya, A. and Sato, K., Tyr 13 is essential for the activity of ω-conotoxin MVIIA and GVIA, specific N-type calcium channel blockers, Biochem. Biophys. Res. Commun., 206 (1995) 449–454.

    PubMed  Google Scholar 

  39. Kim, J. I., Takahashi, M., Ogura, A., Kohno, T., Kudo, Y. and Sato, K., Hydroxyl group of Tyr 13 is essential for the activity of ω-conotoxin GVIA, a peptide toxin for N-type calcium channel, J. Biol. Chem., 269 (1994) 23876–23978.

    PubMed  Google Scholar 

  40. Lew, M. J., Flinn, J. P., Pallaghy, P. K., Murphy, R., Whorlow, S. L., Wright, C. E., Norton, R. S. and Angus, J. A., Structure-function relationships of ω-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogues, J. Biol. Chem., 272 (1997) 12014–12023.

    PubMed  Google Scholar 

  41. Nadasdi, L., Yamashiro, D., Chung, D., Tarczy-Hornoch, K., Adriaenssens, P. and Ramachandran, J. Structure-activity analysis of a Conus peptide blocker of N-type neuronal calcium channels, Biochemistry, 34 (1995) 8076–8081.

    PubMed  Google Scholar 

  42. Schroeder, T., Nielsen, K. J., Adams, D. A., Thomas, L., Loughnan, M. L., Alewood, P. F., Lewis, R. J. and Craik, D. J., Refining the ω-Conotoxin Pharmacophore, 26th Annual Lorne Conference on Protein Structure and Function, Lorne, Australia, 2001, p. A–57.

  43. Pallaghy, P. K., Duggan, B. M., Pennington, M. W. and Norton, R. S., Three-dimensional structure in solution of the calcium channel blocker ω-conotoxin, J. Mol. Biol., 234 (1993) 405–420.

    PubMed  Google Scholar 

  44. Pallaghy, P. K. and Norton, R. S., Refined solution structure of ω-conotoxin GVIA: Implications for calcium channel binding, J. Pept. Res., 53 (1999) 343–351.

    PubMed  Google Scholar 

  45. Nielsen, K. J., Thomas, L., Lewis, R. J., Alewood, P. F. and Craik, D. J., A consensus structure for ω-conotoxins with different selectivities for voltage-sensitive calcium channel subtypes: Comparison of MVIIA, SVIB and SNX-202, J. Mol. Biol., 263 (1996) 297–310.

    PubMed  Google Scholar 

  46. Davis, J. H., Bradley, E. K., Miljanich, G. P., Nadasdi, L., Ramachandran, J. and Basus, V. J., Solution structure of ω-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis, Biochemistry, 32 (1993) 7396–7405.

    PubMed  Google Scholar 

  47. Atkinson, R. A., Kieffer, B., Dejaegere, A., Sirockin, F. and 6efevre, J. F., Structural and dynamic characterization of ω-conotoxin MVIIA: The binding loop exhibits slow conformational exchange, Biochemistry, 39 (2000) 3908–3919.

    PubMed  Google Scholar 

  48. Basus, V. J., Nadasdi, L., Ramachandran, J. and Miljanich, G. P., Solution structure of ω-conotoxin MVIIA using 2D NMR spectroscopy, FEBS Lett., 370 (1995) 163–169.

    PubMed  Google Scholar 

  49. Sevilla, P., Bruix, M., Santoro, J., Gago, F., Garcia, A. G., and Rico, M., Three-dimensional structure of ω-conotoxin GVIA determined by 1 H NMR, Biochem. Biophys. Res. Commun., 192 (1993) 1238–1244.

    PubMed  Google Scholar 

  50. Skalicky, J. J., Metzler, W. J., Ciesla, D. J., Galdes, A. and Pardi, A., Solution structure of the calcium channel antagonist ω-conotoxin GVIA, Protein Sci., 2 (1993) 1591–1603.

    PubMed  Google Scholar 

  51. Ho, C. M. and Marshall, G. R. FOUNDATION: A program to retrieve all possible structures containing a user-defined minimum number of matching query elements from three-dimensional databases, J. Comput. Aided Mol. Des., 7 (1993) 3–22.

    PubMed  Google Scholar 

  52. Insight II Modeling Enviroment (2001) 97, 2000, 2000.1, Accelrys Inc, San Diego.

  53. Weiner, S. J., Kollman, P. A., Nguyen, D. T. and Case, D. A., An all atom force field for simulations of proteins and nucleic acids, J. Comp. Chem., 7 (1986) 230–253.

    Google Scholar 

  54. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. S., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106 (1984) 765–784.

    Google Scholar 

  55. Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, M., Lipton, M., Caufield, C., Chang, G., Hendrickson, T. and Still, W. C., Macromodel — An integrated software system for modeling organic and bioorganic molecules using molecular mechanics, J. Comput. Chem., 11 (1990) 440–467.

    Google Scholar 

  56. Still, W. C., Tempczyk, A., Hawley, R. C. and Hendrickson, T., Semianalytical treatment of solvation for molecular mechanics and dynamics, J. Am. Chem. Soc., 112 (1990) 6127–6129.

    Google Scholar 

  57. Saunders, M., Houk, K. N., Wu, Y.-D., Still, C., Lipton, M., Chang, G. and Guida, W. C. Conformations of cycloheptodecane. A comparison of methods for comformational searching, J. Am. Chem. Soc., 112 (1990) 1419–1427.

    Google Scholar 

  58. Goodman, J. M. and Still, W. C., An unbounded systematic search of conformational space, J. Comp. Chem., 12 (1991) 1110–1117.

    Google Scholar 

  59. Chang, G., Guida, W. C. and Still, W. C., An internal-coordinate Monte Carlo method for searching conformational space, J. Am. Chem. Soc., 111 (1989) 4379–4386.

    Google Scholar 

  60. Shah, A. V., Walters, W. P., Shah, R. and Dolata, D. P., Babel — 'A molecular structure information interchange hub', in computerized chemical data standards: Databases, data interchange and information systems, American Society for Testing and Materials, Philadelphia, ASTM STP, 1994.

    Google Scholar 

  61. Wagner, J. A., Snowman, A. M., Biswas, A., Olivera, B. M. and Snyder, S. H., ω-Conotoxin GVIA binding to high-affinity receptor in brain: Characterization, calcium sensitivity, and solubilization, J. Neurosci., 8 (1988) 3354–3359.

    PubMed  Google Scholar 

  62. Ahmad, S. N. and Miljanich, G. P., The calcium channel antagonist, ω-conotoxin, and electric organ nerve terminals: Binding and inhibition of transmitter release and calcium influx, Brain Res., 453 (1988) 247–256.

    PubMed  Google Scholar 

  63. Cruz, L. J. and Olivera, B. M., Calcium channel antagonists. ω-Conotoxin defines a new high affinity site, J. Biol. Chem., 261 (1986) 6230–6233.

    PubMed  Google Scholar 

  64. Fraker, P. J. and Speck, J. C., Protein and cell membrane iodination with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycouril, Biochem. Biophys. Res. Commun., 80 (1978) 849–857.

    PubMed  Google Scholar 

  65. Nikiforovich, G. V., Kövér, K. E., Zhang, W. J. and Marshall, G. R., Cyclopentapeptides as flexible conformational Templates, J. Am. Chem. Soc., 122 (2000) 3262–3273.

    Google Scholar 

  66. Horton, D. A., Bourne, G. T. and Smythe, M. L. Exploring privileged structures: The combinatorial synthesis of cyclic peptides, J. Comput. Aided Mol. Des., 16 (2002) 415–430.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, C.I., Smythe, M.L. & Lewis, R.J. Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel. Mol Divers 8, 127–134 (2004). https://doi.org/10.1023/B:MODI.0000025656.79632.86

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000025656.79632.86

Navigation