Skip to main content
Log in

Genetic and Epigenetic Changes in Mammary Epithelial Cells May Mimic Early Events in Carcinogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Studies of human mammary epithelial cells from healthy individuals are providing novel insights into how early epigenetic and genetic events affect genomic integrity and fuel carcinogenesis. Key epigenetic changes, such as the hypermethylation of the p16 INK4a promoter sequences, create a previously unappreciated preclonal phase of tumorigenesis in which a subpopulation of mammary epithelial cells are positioned for progression to malignancy (Romanov et al., 2001, Nature, 409:633ndash;637; Tlsty et al., 2001, J. Mammary Gland Biol. Neoplasia, 6:235–243). These key changes precede the clonal outgrowth of premalignant lesions and occur frequently in healthy, disease-free women. Understanding more about these early events should provide novel molecular candidates for prevention and therapy of breast cancer that target the process instead of the consequences of genomic instability. This review will highlight some of the key alterations that have been studied in human mammary epithelial cells in culture and relate them to events observed in vivo and discussed in accompanying reviews in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. L. Hammond, R. G. Ham, and M. R. Stampfer (1984). Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended passage with pituitary extract. Proc. Natl. Acad. Sci. U.S.A. 81:5435-5439.

    Google Scholar 

  2. C. Y. Kao, K. Nomata, C. S. Oakley, C. W. Welsh, and C. C. Chang (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty: Phenotypic characterization and response to SV40 transfection. Carcino-genesis (Lond.) 16:531-538.

    Google Scholar 

  3. V. Band and R. Sager (1989). Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that support long-term growth of both cell types. Proc. Natl. Acad. Sci. U.S.A. 86:1249-1253.

    Google Scholar 

  4. J. Taylor-Papadimitriou, M. Stampfer, J. Bartek, A. Lewis, M. Boshell, E. B. Lane, and I. M. Leigh (1989). Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: Relation to in vivo phenotypes and influence of medium. J. Cell Sci. 94:403-413.

    Google Scholar 

  5. T. Kiyono, S. A. Foster, J. I. Koop, J. K. McDougall, D. A. Galloway, and A. J. Klingelhutz (1998). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84-88.

    Google Scholar 

  6. K. H. Walen and M. R. Stampfer (1989). Chromosome analyses of human mammary epithelial cells at stages of chemical-induced transformation progression to immortality. Cancer Genet. Cytogenet 37:249-261.

    Google Scholar 

  7. W. C. Hahn, C. M. Counter, A. S. Lundberg, R. L. Beijersbergen, M. W. Brooks, and R. A. Weinberg (1999). Creation of human tumor cells with defined genetic elements. Nature 400:464-468.

    Google Scholar 

  8. S. A. Foster and D. A. Galloway (1996). Human papillo-mavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12:1773-1779.

    Google Scholar 

  9. L. R. Livingston, A. White, J. Sprouse, E. Livanos, T. Jacks, and T. D. Tlsty (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923-935.

    Google Scholar 

  10. S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, M. R. Stampfer, L. M. Haupt, and T. D. Tlsty (2001). Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633-637.

    Google Scholar 

  11. L. I. Huschtscha, J. R. Noble, A. A. Neumann, E. L. Moy, P. Barry, J. R. Melki, S. J. Clark, and R. R. Reddel (1998). Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res. 58:3508-3512.

    Google Scholar 

  12. A. J. Brenner, M. R. Stampfer, and C. M. Aldaz (1998). Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17:199-205.

    Google Scholar 

  13. S.A. Foster, D.J. Wong, M.T. Barrett, and D.A. Galloway (1998). Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell Biol. 18:1793-1801.

    Google Scholar 

  14. L. Hayflick (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37:614-636.

    Google Scholar 

  15. A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, and W. E. Wright (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279:349-352.

    Google Scholar 

  16. X. R. Jiang, G. Jimenez, E. Chang, M. Frolkis, B. Kusler, M. Sage, M. Beeche, A. G. Bodnar, G. M. Wahl, T. D. Tlsty, and C. P. Chiu (1999). Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Gene. 21:111-114.

    Google Scholar 

  17. M. R. Stampfer, J. Garbe, E. Levine, S. Lichtsteiner, A. P. Vasserot, and P. Yaswen (2001). Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor ß growth inhibition in p16INK4a ( - ) human mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 98:4498-4503.

    Google Scholar 

  18. J. A. Benanti and D. A. Galloway (2004). Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell Biol. 24:2842-2852.

    Google Scholar 

  19. R. D. Ramirez, C. P. Morales, B. S. Herbert, J. M. Rohde, C. Passons, J. W. Shay, and W. E. Wright (2001). Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15:398-403.

    Google Scholar 

  20. M. Serrano, G. J. Hannon, and D. Beach (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704-707.

    Google Scholar 

  21. R.H. Medema, R.E. Herrera, F. Lam,and R.A. Weinberg (1995). Growth suppression by p16INK4 requines functional retinoblastoma protein. Proc. Natl. Acad. Sci. U.S.A. 92:6289- 6293.

    Google Scholar 

  22. P. Cairns, L. Mao, A. Merlo, D. J. Lee, D. Schwab, Y. Eby, K. Tokino, P. Van der, Riet, J. E. Blaugrund, and Sidransky D (1994). Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 265:415-417.

    Google Scholar 

  23. P. Krinferpot, K. C. Quon, W. J. Mooi, A. Loonstra, and A. Berns (2001). Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83-86.

    Google Scholar 

  24. N. E. Sharpless, N. Bardeesy, K. H. Lee, D. Carrasco, D. H. Castrillon, A. J. Aguirre, Wu EA, J. W. Horner, and R. A. DePino (2001). Loss of p16Ink4a with retention of p19Arf pre-disposes mice to tumorigenesis. Nature 413:86-91.

    Google Scholar 

  25. M. Gonzalez-Zulueta, C. M. Bender, A. S. Yang, T. Nguyen, R. W. Beart, Van J. M. Tornout, and P. A. Jones (1997). Methylation of the 5CpG island of the p16/CDKN2 tumor suppresor gene in normal and transformed human tissue correlates with gene silencing. Cancer Res 55:4531-4535.

    Google Scholar 

  26. R. Yang, M. Serrano, J. Slater, E. Leung, and H. P. Koeffler (1996). Analysis of p16INK4a and its interaction with CDK4. Biochem. Biophys. Res. Commun. 218:254-259.

    Google Scholar 

  27. D. Parry and G. Peters (1996). Temperature-sensitive mutants of p16 CDKN2 associated with familial melanoma. Mol. Cell Biol. 16:3844-3852.

    Google Scholar 

  28. S. B. Baylin and J. G. Herman (2000). DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Gene. 4:168-174.

    Google Scholar 

  29. C. Nguyen, G. Liang, T. T. Nguyen, D. Tsao-Wei, S. Groshen, Lübbert M, J. H. Zhou, W. F. Benedict, and P. A. Jones (2001). Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J. Natl. Cancer Inst. 93:1465-1472.

    Google Scholar 

  30. M. R. Stampfer, A. Bodnar, J. Garbe, M. Wong, A. Pan, B. Villeponteau, and P. Yaswen (1997). Gradual phenotypic conversion associated with immortalization of cultured human mammary epithelial cells. Mol. Biol. Cell 8:2391-2405.

    Google Scholar 

  31. B. Van Steensel, A. Smogorzewska, and T. de Lange (1998). TRF2 protects human telomeres from end-to-end fusions. Cell 92:401-413.

    Google Scholar 

  32. R. R. Burbano, A. Medeiros, M. I. deAmorim, E. M. Lima, A. Mello, J. B. Neto, and C. Casartelli (2000). Cytogenetics of epithelial hyperplasias of the human breast. Cancer Genet. Cytogenet. 119:62-66.

    Google Scholar 

  33. N. Pandis, M. R. Teixeira, A. M. Gerdes, J. Limon, G. Bardi, J. A. Andersen, I. Idvall, N. Mandahl, F. Mitelman, and S. Heim (1995). Chromosome abnormalities in bilateral breast carcinomas. Cytogenetic evaluation of the clonal origin of multiple primary tumors. Cancer 76:250-258.

    Google Scholar 

  34. J. W. Berg and R. V. Hutter (1995). Breast. cancer. Cancer 75:257-269.

    Google Scholar 

  35. Y. G. Crawford, M. L. Gauthier, A. Joubel, K. Mantei, K. Kozakiewicz, C. A. Afshari, and T. D. Tlsty (2004). Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5:263-273.

    Google Scholar 

  36. S. E. Luria and M. Delbrück (1943). Mutations of bacteria from virus sensitive to virus resistance. Genetics 28:491-511.

    Google Scholar 

  37. T. D. Tlsty, B. H. Margolin, and K. Lum (1989). Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbrück fluctuation analysis. Proc. Natl. Acad. Sci. U.S.A. 86:9441-9445.

    Google Scholar 

  38. C. R. Holst, G. J. Nuovo, M. Esteller, K. Chew, S. B. Baylin, J. G. Herman, and T. D. Tlsty (2003). Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63:1596-1601.

    Google Scholar 

  39. J. G. Herman, C. I. Civin, J. P. Issa, M. I. Collector, S. J. Sharkis, and S. B. Baylin (1997). Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 57:837-841.

    Google Scholar 

  40. J. G. Herman, J. R. Graff, S. Myöhänen, B. D. Nelkin, and S. B. Baylin (1996). Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U.S.A. 93:9821-9826.

    Google Scholar 

  41. G. J. Nuovo, T. W. Plaia, S. A. Belinsky, S. B. Baylin, and J. G. Herman (1999). In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in onco-genesis. Proc. Natl. Acad. Sci. U.S.A. 96:12754-12759.

    Google Scholar 

  42. L. R. Howe, K. Subbaramaiah, A. M. Brown, and A. J. Dannenberg (2001). Cyclooxygenase-2: A target for the prevention and treatment of breast cancer. Endocr. Relat. Cancer 8:97-114.

    Google Scholar 

  43. G. K. Bandyopadhyay, W. Imagawa, D. Wallace, and S. Nandi (1987). Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J. Biol. Chem. 262:2750-2756.

    Google Scholar 

  44. R. E. Harris, F. M. Robertson, H. M. Abou-Issa, W. B. Farrar, and R. Brueggemeier (1999). Genetic induction and upregulation of cyclooxygenase (COX) and aromatase (CYP19): An extension of the dietary fat hypothesis of breast cancer. Med. Hypotheses 52:291-292.

    Google Scholar 

  45. M. Huang, M. Stolina, S. Sharma, J. T. Mao, L. Zhu, P. W. Miller, J. Wollman, Herschman H, and S. M. Dubinett (1998). Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: Up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58:1208-1216.

    Google Scholar 

  46. S. Gately (2000). The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev. 19:19-27.

    Google Scholar 

  47. X. H. Liu, S. Yao, A. Kirschenbaum, and A. C. Levine (1998). NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res. 58:4245-4249.

    Google Scholar 

  48. M. Nielsen, J. L. Thomsen, S. Primdahl, U. Dyreborg, and J. A. Andersen (1987). Breast cancer and atypia among young and middle-aged women: Astudy of 110 medicolegal autopsies. Br. J. Cancer. 56:814-819.

    Google Scholar 

  49. C. E. Alpers and S. R. Wellings (1985). The prevalence of carcinoma in situ in normal and cancer-associated breasts. Hum. Pathol. 16:796-807.

    Google Scholar 

  50. H. G. Welch and W. C. Black (1997). Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: How much more breast cancer can we find? Ann. Intern. Med. 127:1023-1028.

    Google Scholar 

  51. V. Shim, M. L. Gauthier, D. Sudilovsky, K. Mantei, K. L. Chew, D. H. Moore, I. Cha, T. D. Tlsty, and L. J. Esser-man (2003). Cyclooxygenase-2 expression is related to nuclear grade in ductal carcinoma in situ and is increased in its normal adjacent epithelium. Cancer Res. 63:2347-2350.

    Google Scholar 

  52. T. D. Tlsty, S. R. Romanov, B. K. Kozakiewicz, C. R. Holst, L. M. Haupt, and Y. G. Crawford (2001). Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence. J. Mammary Gland Biol. Neoplasi a. 6:235-243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlsty, T.D., Crawford, Y.G., Holst, C.R. et al. Genetic and Epigenetic Changes in Mammary Epithelial Cells May Mimic Early Events in Carcinogenesis. J Mammary Gland Biol Neoplasia 9, 263–274 (2004). https://doi.org/10.1023/B:JOMG.0000048773.95897.5f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000048773.95897.5f

Navigation