Skip to main content
Log in

Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Taking advantage of recent developments in the field of metallic nanoparticle-based colorimetric DNA detection and in the field of in vitro selection of functional DNA/RNA that can recognize a wide range of analytes, we have designed highly sensitive and selective colorimetric biosensors for many analytes of choice. As an example of the sensor design strategy, a highly sensitive and selective colorimetric lead biosensor based on DNAzyme-directed assembly of gold nanoparticles is reviewed. The DNAzyme consists of an enzyme and a substrate strand, which can be used to assemble DNA-functionalized gold nanoparticles. The aggregation brings gold nanoparticles together, resulting in a blue-colored nanoparticle assembly. In the presence of lead, the DNAzyme catalyzes specific hydrolytic cleavage of the substrate strand, which disrupts the formation of the nanoparticle assembly, resulting in red-colored individual nanoparticles. The application of the sensor in lead detection in leaded paint is also demonstrated. In perspective, the use of allosteric DNA/RNAzymes to expand the range of the nanoparticle-based sensor design method is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. B. Weiser (1933). Inorganic Colloid Chemistry, Vol. 1, Wiley, New York.

    Google Scholar 

  2. D. A. Handley (1989). In M. A. Hayat (Ed.), Coloidal Gold Principles, Methods, and Applications, Academic Press, San Diego, CA, pp. 1-12.

    Google Scholar 

  3. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607-609.

    Google Scholar 

  4. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078-1080.

    Google Scholar 

  5. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959-1964.

    Google Scholar 

  6. T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757-1760.

    Google Scholar 

  7. Y. Cao, R. Jin, and C. A. Mirkin (2001). DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123(32), 7961-7962.

    Google Scholar 

  8. G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger (1999). Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122-8123.

    Google Scholar 

  9. R. Chakrabarti and A. M. Klibanov (2003). Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J. Am. Chem. Soc. 125(41), 12531-12540.

    Google Scholar 

  10. K. Sato, K. Hosokawa, and M. Maeda (2003). Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 125(27), 8102-8103.

    Google Scholar 

  11. L. Gold, B. Polisky, O. Uhlenbeck, and M. Yarus (1995). Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763-797.

    Google Scholar 

  12. S. E. Osborne and A. D. Ellington (1997). Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97(2), 349-370.

    Google Scholar 

  13. R. R. Breaker (1997). In vitro selection of catalytic polynucleotides. Chem. Rev. 97(2), 371-390.

    Google Scholar 

  14. D. S. Wilson and J. W. Szostak (1999). In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611-647.

    Google Scholar 

  15. G. F. Joyce and L. E. Orgel (1999). In R. F. Gesteland, T. R. Cech, and J. F. Atkins (Ed.), RNA World, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 49-77.

    Google Scholar 

  16. S. D. Jayasena (1999). Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628-1650.

    Google Scholar 

  17. E. N. Brody and L. Gold (2000). Aptamers as therapeutic and diagnostic agents. Rev. Mol. Biotech. 74(1), 5-13.

    Google Scholar 

  18. J. Hesselberth, M. P. Robertson, S. Jhaveri, and A. D. Ellington (2000). In vitro selection of nucleic acids for diagnostic applications. Rev. Mol. Biotechnol. 74(1), 15-25.

    Google Scholar 

  19. G. A. Soukup and R. R. Breaker (2000). Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10(3), 318-325.

    Google Scholar 

  20. R. R. Breaker (2002). Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13(1), 31-39.

    Google Scholar 

  21. H. Ueyama, M. Takagi, and S. Takenaka (2002). A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am. Chem. Soc. 124(48), 14286-14287.

    Google Scholar 

  22. J. Ciesiolka and M. Yarus (1996). Small RNA-divalent domains. RNA 2(8), 785-793.

    Google Scholar 

  23. H. P. Hofmann, S. Limmer, V. Hornung, and M. Sprinzl (1997). Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA 3(11), 1289-1300.

    Google Scholar 

  24. A. D. Ellington and J. W. Szostak (1992). Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363), 850-852.

    Google Scholar 

  25. A. D. Ellington and J. W. Szostak (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818-822.

    Google Scholar 

  26. C. Wilson and J. W. Szostak (1998). Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5(11), 609-617.

    Google Scholar 

  27. D. Grate and C. Wilson (1999). Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 96(11), 6131-6136.

    Google Scholar 

  28. C. Wilson, J. Nix, and J. Szostak (1998). Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37(41), 14410-14419.

    Google Scholar 

  29. M. N. Stojanovic, P. de Prada, and D. W. Landry (2000). Fluorescent sensors based on aptamer self-assembly. J. Am. Chem. Soc. 122(46), 11547-11548.

    Google Scholar 

  30. G. R. Zimmermann, C. L. Wick, T. P. Shields, R. D. Jenison, and A. Pardi (2000). Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6(5), 659-667.

    Google Scholar 

  31. M. Meli, J. Vergne, J.-L. Decout, and M.-C. Maurel (2002). Adenine-aptamer complexes. A bipartite RNA site that binds the adenine nucleic base. J. Biol. Chem. 277(3), 2104-2111.

    Google Scholar 

  32. C. Mannironi, A. Di Nardo, P. Fruscoloni, and G. P. Tocchini-Valentini (1997). In vitro selection of dopamine RNA ligands. Biochemistry 36(32), 9726-9734.

    Google Scholar 

  33. I. Majerfeld and M. Yarus (1994). An RNA pocket for an aliphatic hydrophobe. Nat. Struct. Biol. 1(5), 287-292.

    Google Scholar 

  34. M. Famulok and J. W. Szostak (1992). Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114(10), 3990-3991.

    Google Scholar 

  35. K. Harada and A. D. Frankel (1995). Identification of two novel arginine binding DNAs. EMBO J. 14(23), 5798-5811.

    Google Scholar 

  36. G. J. Connell, M. Illangesekare, and M. Yarus (1993). Three small ribooligonucleotides with specific arginine sites. Biochemistry 32(21), 5497-5502.

    Google Scholar 

  37. J. Tao and A. D. Frankel (1996). Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35(7), 2229-2238.

    Google Scholar 

  38. M. Famulok (1994). Molecular recognition of amino acids by RNA-aptamers: An L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116(5), 1698-1706.

    Google Scholar 

  39. G. J. Connell and M. Yarus (1994). RNAs with dual specificity and dual RNAs with similar specificity. Science 264(5162), 1137-1141.

    Google Scholar 

  40. N. K. Vaish, R. Larralde, A. W. Fraley, J. W. Szostak, and L. W. McLaughlin (2003). A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 42(29), 8842-8851.

    Google Scholar 

  41. M. Sassanfar and J. W. Szostak (1993). An RNA motif that binds ATP. Nature 364(6437), 550-553.

    Google Scholar 

  42. J. H. Davis and J. W. Szostak (2002). Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl. Acad. Sci. U.S.A. 99(18), 11616-11621.

    Google Scholar 

  43. M. Koizumi and R. R. Breaker (2000). Molecular recognition of cAMP by an RNA aptamer. Biochemistry 39(30), 8983-8992.

    Google Scholar 

  44. S. M. Rink, J.-C. Shen, and L. A. Loeb (1998). Creation of RNA molecules that recognize the oxidative lesion 7,8-dihydro-8-hydroxy-2'-deoxyguanosine (8-oxodG) in DNA. Proc. Natl. Acad. Sci. U.S.A. 95(20), 11619-11624.

    Google Scholar 

  45. C. Boiziau, E. Dausse, L. Yurchenko, and J.-J. Toulme (1999). DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J. Biol. Chem. 274(18), 12730-12737.

    Google Scholar 

  46. C. T. Lauhon and J. W. Szostak (1995). RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117(4), 1246-1257.

    Google Scholar 

  47. P. Burgstaller and M. Famulok (1994). Isolation of RNA aptamers for biological cofactors by in vitro selection Angew. Chem. 106(10), 1163-1166 (see also Angew. Chem., Int. Ed. Engl. 1133(1110), 1084-1167(1994).

    Google Scholar 

  48. D. J. F. Chinnapen and D. Sen (2002). Hemin-stimulated docking of cytochrome c to a Hemin-DNA aptamer complex. Biochemistry 41(16), 5202-5212.

    Google Scholar 

  49. J. R. Lorsch and J. W. Szostak (1994). In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33(4), 973-982.

    Google Scholar 

  50. M. Roychowdhury-Saha, S. M. Lato, E. D. Shank, and D. H. Burke (2002). Flavin recognition by an RNA aptamer targeted towardFAD. Biochemistry 41(8), 2492-2499.

    Google Scholar 

  51. D. Burke and D. Hoffman (1998). A novel acidophilic RNA motif that recognizes coenzyme A. Biochemistry 37(13), 4653-4663.

    Google Scholar 

  52. Y. Wang, J. Killian, K. Hamasaki, and R. R. Rando (1996). RNA molecules that specifically and stoichiometrically bind aminoglycoside antibiotics with high affinities. Biochemistry 35(38), 12338-12346.

    Google Scholar 

  53. M. G. Wallis, U. von Ahsen, R. Schroeder, and M. Famulok (1995). A novel RNA motif for neomycin recognition. Chem. Biol. 2(8), 543-552.

    Google Scholar 

  54. Q. Yang, I. J. Goldstein, H.-Y. Mei, and D. R. Engelke (1998). DNA ligands that bind tightly and selectively to cellobiose. Proc. Natl. Acad. Sci. U.S.A. 95(10), 5462-5467.

    Google Scholar 

  55. C. Srisawat, I. J. Goldstein, and D. R. Engelke (2001). Sephadex-binding RNA ligands: Rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 29(2), E4/1-E4/5.

    Google Scholar 

  56. S. T. Wallace and R. Schroeder (1998). In vitro selection and characterization of streptomycin-binding RNAs: Recognition discrimination between antibiotics. RNA 4(1), 112-123.

    Google Scholar 

  57. M. G. Wallis, B. Streicher, H. Wank, U. von Ahsen, E. Clodi, S. T. Wallace, M. Famulok, and R. Schroeder (1997). In vitro selection of a viomycin-binding RNA pseudoknot. Chem. Biol. 4(5), 357-366.

    Google Scholar 

  58. C. Berens, A. Thain, and R. Schroeder (2001). A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9(10), 2549-2556.

    Google Scholar 

  59. L. Giver, D. Bartel, M. Zapp, A. Pawul, M. Green, and A. D. Ellington (1993). Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 21(23), 5509-5516.

    Google Scholar 

  60. K. P. Williams, X.-H. Liu, T. N. M. Schumacher, H. Y. Lin, D. A. Ausiello, P. S. Kim, and D. P. Bartel (1997). Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. U.S.A. 94(21), 11285-11290.

    Google Scholar 

  61. D. Nieuwlandt, M. Wecker, and L. Gold (1995). In vitro selection of RNA ligands to substance P. Biochemistry 34(16), 5651-5659.

    Google Scholar 

  62. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360), 564-566.

    Google Scholar 

  63. C. Tuerk, S. MacDougal, and L. Gold (1992). RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 89(15), 6988-6992.

    Google Scholar 

  64. M. Vuyisich and P. A. Beal (2002). Controlling protein activity with ligand-regulated RNA aptamers. Chem. Biol. 9(8), 907-913.

    Google Scholar 

  65. F. Pileur, M.-L. Andreola, E. Dausse, J. Michel, S. Moreau, H. Yamada, S. A. Gaidamakov, R. J. Crouch, J.-J. Toulme, and C. Cazenave (2003). Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res. 31(19), 5776-5788.

    Google Scholar 

  66. N. C. Pagratis, C. Bell, Y.-F. Chang, S. Jennings, T. Fitzwater, D. Jellinek, and C. Dang (1997). Potent 2'-amino-, and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nature Biotech. 15(1), 68-73.

    Google Scholar 

  67. D. Jellinek, L. S. Green, C. Bell, C. K. Lynott, N. Gill, C. Vargeese, G. Kirschenheuter, D. P. C. McGee, P. Abesinghe, et al. (1995). Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34(36), 11363-11372.

    Google Scholar 

  68. J. Ruckman, L. S. Green, J. Beeson, S. Waugh, W. L. Gillette, D. D. Henninger, L. Claesson-Welsh, and N. Janjic (1998). 2'-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273(32), 20556-20567.

    Google Scholar 

  69. L. L. Lebruska and L. J. MaherIII (1999). Selection and characterization of an RNA decoy for transcription factor NF-ΚB. Biochemistry 38(10), 3168-3174.

    Google Scholar 

  70. T. W. Wiegand, P. B. Williams, S. C. Dreskin, M. H. Jouvin, J. P. Kinet, and D. Tasset (1996). High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immun. 157(1), 221-230.

    Google Scholar 

  71. I. A. Nazarenko and O. C. Uhlenbeck (1995). Defining a smaller RNA substrate for elongation factor Tu. Biochemistry 34(8), 2545-2552.

    Google Scholar 

  72. K. A. Davis, Y. Lin, B. Abrams, and S. D. Jayasena (1998). Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res. 26(17), 3915-3924.

    Google Scholar 

  73. S. Jeong, T.-Y. Eom, S.-J. Kim, S.-W. Lee, and J. Yu (2001). In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem. Biophys. Res. Commun. 281(1), 237-243.

    Google Scholar 

  74. M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener (2001). Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276(19), 16464-16468.

    Google Scholar 

  75. W. Pan, R. C. Craven, Q. Qiu, C. B. Wilson, J. W. Wills, S. Golovine, and J.-F. Wang (1995). Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc. Natl. Acad. Sci. U.S.A. 92(25), 11509-11513.

    Google Scholar 

  76. J. G. Bruno and J. L. Kiel (1999). In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectr. 14(5), 457-464.

    Google Scholar 

  77. J. Tsang and G. F. Joyce (1996). In vitro evolution of randomized ribozymes. Methods Enzymol. 267 (Combinatorial Chemistry), 410-426.

    Google Scholar 

  78. R. R. Breaker (1997). DNA enzymes. Nat. Biotechnol. 15(5), 427-431.

    Google Scholar 

  79. R. R. Breaker (1997). DNA aptamers and DNA enzymes. Curr. Opin. Chem. Biol. 1(1), 26-31.

    Google Scholar 

  80. D. Sen and C. R. Geyer (1998). DNA enzymes. Curr. Opin. Chem. Biol. 2(6), 680-687.

    Google Scholar 

  81. M. Kurz and R. R. Breaker (1999). In vitro selection of nucleic acid enzymes. Current Topics in Microbiology and Immunology 243 (Combinatorial Chemistry in Biology), 137-158.

    Google Scholar 

  82. T. R. Cech (1987). The chemistry of self-splicing RNA and RNA enzymes. Science 236(4808), 1532-1539.

    Google Scholar 

  83. T. R. Cech (2000). Perspectives. Structural biology: The ribosome is a ribozyme. Science 289(5481), 878-879.

    Google Scholar 

  84. N. K. Vaish, P. A. Heaton, O. Fedorova, and F. Eckstein (1998). In vitro selection of a purine nucleotide-specific hammerhead-like ribozyme. Proc. Natl. Acad. Sci. U.S.A. 95(5), 2158-2162.

    Google Scholar 

  85. E. H. Ekland, J. W. Szostak, and D. P. Bartel (1995). Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269(5222), 364-370.

    Google Scholar 

  86. J. R. Lorsch and J. W. Szostak (1994). In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371(6492), 31-36.

    Google Scholar 

  87. E. H. Ekland and D. P. Bartel (1996). RNA-catalyzed RNA polymerization using nucleoside triphosphates. Nature 382(6589), 373-376.

    Google Scholar 

  88. M. Illangasekare and M. Yarus (1997). Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J. Mol. Biol. 268(3), 631-639.

    Google Scholar 

  89. J. A. Piccirilli, T. S. McConnell, A. J. Zaug, H. F. Noller, and T. R. Cech (1992). Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256(5062), 1420-1424.

    Google Scholar 

  90. P. A. Lohse and J. W. Szostak (1996). Ribozyme-catalyzed amino-acid transfer reactions. Nature 381(6581), 442-444.

    Google Scholar 

  91. C. Wilson and J. W. Szostak (1995). In vitro evolution of a self-alkylating ribozyme. Nature 374(6525), 777-782.

    Google Scholar 

  92. M. Wecker, D. Smith, and L. Gold (1996). In vitro selection of a novel catalytic RNA: Characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2(10), 982-994.

    Google Scholar 

  93. X. Dai, A. De Mesmaeker, and G. F. Joyce (1995). Cleavage of an amide bond by a ribozyme. Science 267(5195), 237-240.

    Google Scholar 

  94. T. W. Wiegand, R. C. Janssen, and B. E. Eaton (1997). Selection of RNA amide synthases. Chem. Biol. 4(9), 675-683.

    Google Scholar 

  95. B. Zhang and T. R. Cech (1997). Peptide bond formation by in vitro selected ribozymes. Nature 390(6655), 96-100.

    Google Scholar 

  96. T. M. Tarasow, S. L. Tarasow, C. Tu, E. Kellogg, and B. E. Eaton (1999). Characteristics of an RNA diels-alderase active site. J. Am. Chem. Soc. 121(15), 3614-3617.

    Google Scholar 

  97. J. R. Prudent, T. Uno, and P. G. Schultz (1994). Expanding the scope of RNA catalysis. Science 264(5167), 1924-1927.

    Google Scholar 

  98. M. M. Conn, J. R. Prudent, and P. G. Schultz (1996). Porphyrin metalation catalyzed by a small RNA molecule. J. Am. Chem. Soc. 118(29), 7012-7013.

    Google Scholar 

  99. R. R. Breaker and G. F. Joyce (1994). A DNA enzyme that cleaves RNA. Chem. Biol. 1(4), 223-229.

    Google Scholar 

  100. R. R. Breaker (2000). Making catalytic DNAs. Science 290(5499), 2095-2096.

    Google Scholar 

  101. Y. Lu (2002). New transition metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem. Eur. J. 84588-4596.

    Google Scholar 

  102. R. R. Breaker and G. F. Joyce (1995). A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2(10), 655-660.

    Google Scholar 

  103. D. Faulhammer and M. Famulok (1997). Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269(2), 188-202.

    Google Scholar 

  104. S. W. Santoro and G. F. Joyce (1997). A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U. S. A. 94(9), 4262-4266.

    Google Scholar 

  105. C. R. Geyer and D. Sen (1997). Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4(8), 579-593.

    Google Scholar 

  106. A. Roth and R. R. Breaker (1998). An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl. Acad. Sci. U.S.A. 95(11), 6027-6031.

    Google Scholar 

  107. J. Li, W. Zheng, A. H. Kwon, and Y. Lu (2000). In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28(2), 481-488.

    Google Scholar 

  108. N. Carmi, L. A. Shultz, and R. R. Breaker (1996). In vitro selection of self-cleaving DNAs. Chem. Biol. 3(12), 1039-1046.

    Google Scholar 

  109. B. Cuenoud and J. W. Szostak (1995). A DNA metalloenzyme with DNA ligase activity. Nature 375(6532), 611-614.

    Google Scholar 

  110. Y. Wang and S. K. Silverman (2003). Deoxyribozymes that synthesize branched and lariat RNA. J. Am. Chem. Soc. 125(23), 6880-6881.

    Google Scholar 

  111. Y. Li and R. R. Breaker (1999). Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci. U.S.A. 96(6), 2746-2751.

    Google Scholar 

  112. Y. Li, Y. Liu, and R. R. Breaker (2000). Capping DNA with DNA. Biochemistry 39(11), 3106-3114.

    Google Scholar 

  113. Y. Li and D. Sen (1996). A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3(9), 743-747.

    Google Scholar 

  114. D. Faulhammer and M. Famulok (1996). The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem., Int. Ed. Engl. 35(23/24), 2837-2841.

    Google Scholar 

  115. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640-4650.

    Google Scholar 

  116. R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz (2003). What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125(6), 1643-1654.

    Google Scholar 

  117. J. Liu and Y. Lu (2003). A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125(22), 6642-6643.

    Google Scholar 

  118. L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, III, R. L. Letsinger, R. Elghanian, and G. Viswanadham (2000). A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72(22), 5535-5541.

    Google Scholar 

  119. J. Liu and Y. Lu (2003). Improving fluorescent DNAzyme biosensors by combining inter-and intramolecular quenchers. Anal. Chem. 75(23), 6666-6672.

    Google Scholar 

  120. U. S. Department of Housing and Urban Development (2001). Unpublished data, 2001.

  121. K. K. Luk, L. L. Hodson, J. A. O'Rouke, D. S. Smith, and W. F. Gutknecht (1993). Investigation of Test Kits for Detection of Lead in Paint, Dust, and Soil, EPA 600/R-93/085, U.S. Environmental Protection Agency, Research Triangle Park, NC.

  122. W. J. Rossiter,Jr., M. G. Vangel, M. E. McKnight, and G. Dewalt (2000, March). Spot Test Kits for Detecting Lead in Household Paint: A Laboratory Evaluation, NISTIR 6398, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  123. A. W. Czarnik (1995). Desperately seeking sensors. Chem. Biol. 2(7), 423-428.

    Google Scholar 

  124. J. Tang and R. R. Breaker (1997). Rational design of allosteric ribozymes. Chem. Biol. 4(6), 453-459.

    Google Scholar 

  125. D. Y. Wang, B. H. Y. Lai, and D. Sen (2002). A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J. Mol. Biol. 318(1), 33-43.

    Google Scholar 

  126. M. Levy and A. D. Ellington (2002). ATP-dependent allosteric DNA enzymes. Chem. Biol. 9(4), 417-426.

    Google Scholar 

  127. G. A. Soukup, G. A. M. Emilsson, and R. R. Breaker (2000). Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298(4), 623-632.

    Google Scholar 

  128. G. A. Soukup, E. C. DeRose, M. Koizumi, and R. R. Breaker (2001). Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7(4), 524-536.

    Google Scholar 

  129. D. E. Huizenga and J. W. Szostak (1995). A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2), 656-665.

    Google Scholar 

  130. J. Liu and Y. Lu (2004). Adenosine dependent assembly of aptazyme-functionalized gold nanoparticles and their application as a colorimetric biosensor. Anal. Chem. 76(6), 1627-1632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Lu, Y. Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles. Journal of Fluorescence 14, 343–354 (2004). https://doi.org/10.1023/B:JOFL.0000031816.06134.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000031816.06134.d3

Navigation