Skip to main content
Log in

Surfactant-Induced Trans-Interface Transportation and Complex Formation of Giant Polyoxomolybdate-Based Clusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The interaction and complex formation between cationic surfactants dimethyldioctadecylammonium Bromide (DODA-Br) and a polyoxomolybdate (POM)-based giant cluster {Mo72Fe30}, in its both single cluster (in aqueous solution, these clusters exist as anions) format and supramolecular format in aqueous solution, are studies by using laser light scattering (LLS) techniques. DODA/{Mo72Fe30} complexes containing basically single {Mo72Fe30} clusters are observed when the {Mo72Fe30} aqueous solution is freshly prepared and contains mainly unimer or oligmer {Mo72Fe30} anions. The {Mo72Fe30} clusters tend to form supramolecular vesicle structures slowly in solution. At high surfactant concentrations, the DODA cationic surfactants can break the vesicle structure and form single {Mo72Fe30}/DODA complexes. At low surfactant concentrations, complexes containing the whole vesicles coated by a layer of DODA is formed and transferred into the organic phase. For the surfactant concentrations in between, the vesicles are partially destroyed, leading to the formation of complexes with large size distribution. Studying the behaviors of the interaction between DODA and {Mo72Fe30} anionic structures will help to further explore the complicated mechanism of the POM vesicle formation, which was recently discovered but still not fully understood. Such unique complex structures may also have potential applications as nanoreactors or nanocontainers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Secheresse, H. Ratajczak, and A. Müller (2002).J. Clust. Sci. 13, 265.

    Google Scholar 

  2. A. Müller, P. Kögerler, and A. W. M. Dress (2001). Coordin. Chem. Rev. 222, 193and the references therein.

    Google Scholar 

  3. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, C. Beugholt, S. K. Das, and F. Peters (1999). Chem. Eur. J. 5, 1496and the references therein.

    Google Scholar 

  4. A. Müller, S. K. Das, V. P. Fedin, E. Krickemeyer, C. Beugholt, and H. Bögge (1999). Z. Anorg. Allg. Chem. 625, 1187.

    Google Scholar 

  5. A. Müller, M. Koop, H. Bögge, M. Schmidtmann, and C. Beugholt (1998). Chem. Commun. 15, 1501.

    Google Scholar 

  6. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters (1998). Angew. Chem. Int. Ed. 37, 3360.

    Google Scholar 

  7. A. Müller, S. Sarkar, S. Q. N. Shah, H. Bögge, M. Schmidtmann, S. Saarkar, P. Kögerler, B. Hauptfleisch, A. X. Trautwein, and V. Schünemann (1999). Angew. Chem., Int. Ed. Engl. 38, 3238.

    Google Scholar 

  8. A. Müller, M. Luban, C. Schroder, R. Modler, P. Kögerler, M. Axenovich, J. Schnack, P. Canfield, S. Bud'ko, and N. Harrison (2001). Chemphyschem. 2 (8–9), 517.

    Google Scholar 

  9. A. Müller, E. Diemann, C. Kuhlmann, W. Eimer, C. Serain, T. Tak, A. Knöchel, and P. K. Pranzas (2001). Chem. Commun. 19, 1928.

    Google Scholar 

  10. T. Liu (2002). J. Am. Chem. Soc. 124, 10942.

    PubMed  Google Scholar 

  11. T. Liu (2003). J. Am. Chem. Soc. 125, 312.

    PubMed  Google Scholar 

  12. T. Liu, E. Diemann, H. Li, A. W. M. Dress, and A. Müller (2003). Nature 425, in press.

  13. D. Volkmer, A. D. Chesne, D. G. Kurth, H. Schnablegger, P. Lehmann, M. J. Koop, and A. Müller (2000). J. Am. Chem. Soc. 122, 1995.

    Google Scholar 

  14. D. G. Kurth, P. Lehmann, D. Volkmer, H. Cölfen, M. J. Koop, A. Müller, and A. D. Chesne (2000). Chem. Eur. J. 6, 385.

    Google Scholar 

  15. D. Volkmer, B. Bredenkötter, J. Tellenbröker, P. Kögeler, D. G. Kurth, P. Lehmann, H. Schnablegger, D. Schwahn, M. Piepenbrink, and B. Krebs (2002). J. Am. Chem. Soc. 124, 10489.

    PubMed  Google Scholar 

  16. D. G. Kurth, P. Lehmann, D. Volkmer, A. Müller, and D. Schwahn (2000). J. Chem. Soc., Dalton Trans. 21, 3989.

    Google Scholar 

  17. There are two different types of {Mo72Fe30} in crystal structures [18]. The one with R¯3 structure has neutral, discrete units was used for this study. Another type of crystal has the space group Cmca. This type of clusters tends to cross-link together via a solid-state reaction by forming Fe-O-Fe bonds. The as-formed oligmers can even be observed in gas phase [19].

  18. A. Müller, S. K. Das, E. Krickemeyer, P. Kögerler, H. Bögge, and M. Schmidtmann (2000). Solid State Sci. 2 (8), 847.

    Google Scholar 

  19. A. Müller, E. Diemann, S. Q. N. Shah, C. Kuhlmann, and M. C. Letzel (2002). Chem. Comm. 5, 440.

    PubMed  Google Scholar 

  20. (a) S. W. Provencher (1979). Makromol. Chem. 180, 210

    Google Scholar 

  21. (b) S. W. Provencher (1982). Comput. Phys. Commun. 27, 213, 229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T. Surfactant-Induced Trans-Interface Transportation and Complex Formation of Giant Polyoxomolybdate-Based Clusters. Journal of Cluster Science 14, 215–226 (2003). https://doi.org/10.1023/B:JOCL.0000005059.45273.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000005059.45273.f8

Navigation