Skip to main content
Log in

Mechanisms of Apoptosis in the Heart

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Apoptosis is a complex and highly regulated form of cell death, and believed to contribute to the continuous decline of ventricular function in heart failure. Apoptotic cell death is observed in a variety of cardiovascular diseases, including myocardial infarction, ischemia-reperfusion injury, end-stage heart failure, arrhythmias, and adriamycin cardiomyopathy. There are several pathways leading to programmed cell death. Apoptosis can be initiated by extracellular or intracellular stimuli, leading to the activation of caspases and subsequent cell death. A better understanding of the process of apoptosis in the heart is clearly important as it may lead to the identification of novel therapies for cardiovascular disease. This review is focused on the basic cellular mechanisms of apoptosis, as well as our current understanding of this process in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Searle J, Kerr JF, Bishop CJ: Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol Annu 17(Pt2):229–259, 1982

    Google Scholar 

  2. Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15, 1995

    Google Scholar 

  3. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigram MJ, Dec GW, Khaw BA: Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189, 1996

    Google Scholar 

  4. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine, G: Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335:1190–1196, 1996

    Google Scholar 

  5. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, and Anversa P: Apoptosis in the failing human heart. N Engl J Med 336:1131–1141, 1997

    Google Scholar 

  6. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, VoipioPulkki, LM: Apoptosis in human acute myocardial infarction. Circulation 95:320–323, 1997

    Google Scholar 

  7. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M: Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426–433, 1994

    Google Scholar 

  8. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P: Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259, 1995

    Google Scholar 

  9. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628, 1994

    Google Scholar 

  10. Fliss H, Gattinger D: Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956, 1996

    Google Scholar 

  11. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV: A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853, 1993

    Google Scholar 

  12. Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937, 1993

    Google Scholar 

  13. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512, 1995

    Google Scholar 

  14. Hsu H, Xiong J, Goeddel DV: The TNF receptor 1—associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504, 1995

    Google Scholar 

  15. Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85:803–815, 1996

    Google Scholar 

  16. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, and Dixit VM: FLICE, a novel FADD-homologous ICE/CED-3—like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827, 1996

    Google Scholar 

  17. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada, M: Caspases are activated in a branched protease cascade and control distinct downstream processes inFas-induced apoptosis. J Exp Med 187:587–600, 1998

    Google Scholar 

  18. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, and Martin SJ: Ordering the cytochrome c-initiated caspase cascade: Hierarchicalactivation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 144:281–292, 1999

    Google Scholar 

  19. Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576, 1996

    Google Scholar 

  20. Beg AA, Baltimore, D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784, 1996

    Google Scholar 

  21. Wang CY, Mayo MW, Baldwin AS, Jr: TNF-and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science 274:784–787, 1996

    Google Scholar 

  22. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma, IM: Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789, 1996

    Google Scholar 

  23. Yamaguchi S, Yamaoka M, Okuyama M, Nitoube J, Fukui A,Shirakabe M, Shirakawa K, Nakamura N, Tomoike, H: Elevated circulating levels and cardiac secretion of soluble Fas ligand in patients with congestive heart failure. Am J Cardiol 83:1500-1503, A8, 1999

    Google Scholar 

  24. Nishigaki K, Minatoguchi S, Seishima M, Asano K, Noda T,Yasuda N, Sano H, Kumada H, Takemura M, Noma A, Tanaka T, Xatanabe S, and Fujiwara H: Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 29:1214–1220, 1997

    Google Scholar 

  25. Schumann H, Morawietz H, Hakim K, Zerkowski HR, Eschenhagen T, Holtz J, Darmer, D: Alternative splicing of the primary Fas transcript generating soluble Fas antagonists is suppressed in the failing human ventricular myocardium. Biochem Biophys Res Commun 239:794–798, 1997

    Google Scholar 

  26. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107, 1996

    Google Scholar 

  27. Hayakawa K, Takemura G, Koda M, Kawase Y, Maruyama R, Li Y, Minatoguchi S, Fujiwara T, Fujiwara, H: Sensitivity to apoptosis signal, clearance rate, and ultrastructure of fas ligand-induced apoptosis in in vivo adult cardiac cells. Circulation 105:3039–3045, 2002

    Google Scholar 

  28. Wollert KC, Heineke J, Westermann J, Ludde M, Fiedler B, Zierhut W, Laurent D, Bauer MK, Schulze-Osthoff K, Drexler H: The cardiac Fas (APO-1/CD95) Receptor/Fas ligand system: Relation to diastolic wall stress in volume-overload hypertrophy in vivo and activation of the transcription factor AP-1 in cardiac myocytes. Circulation 101:1172–1178, 2000

    Google Scholar 

  29. Yamaoka M, Yamaguchi S, Suzuki T, Okuyama M, Nitobe J,Nakamura N, Mitsui Y, Tomoike, H: Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. J Mol Cell Cardiol 32:881–889, 2000

    Google Scholar 

  30. Yaniv G, Shilkrut M, Lotan R, Berke G, Larisch S, Binah O: Hypoxia predisposes neonatal rat ventricular myocytes to apoptosis induced by activation of the Fas (CD95/Apo-1) receptor: Fas activation and apoptosis in hypoxic myocytes. Cardiovasc Res 54:611–623, 2002

    Google Scholar 

  31. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S: Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809, 1993

    Google Scholar 

  32. Webster KA, Bodi I, McNamara JP, Tracy M, Discher DJ, Bishopric NH: Negative lusitropy and abnormal calcium handling in hypoxic cardiac myocytes exposed to the calcium-sensitizer EMD 53998. J Mol Cell Cardiol 25:747–751, 1993

    Google Scholar 

  33. Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E: Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578, 2000

    Google Scholar 

  34. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN: Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 284:H456-H463, 2003

    Google Scholar 

  35. Jeremias I, Kupatt C, Martin-Villalba A, Habazettl H, Schenkel J, Boekstegers P, Debatin KM: Involvement of CD95/Apol/Fas in cell death after myocardial ischemia. Circulation 102:915–920, 2000

    Google Scholar 

  36. Ohtsuka T, Hamada M, Hiasa G, Sasaki O, Suzuki M, Hara Y, Shigematsu Y, Hiwada K: Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J Am Coll Cardiol 37:412–417, 2001

    Google Scholar 

  37. Maury CP, Teppo AM: Circulating tumour necrosis factor-alpha (cachectin) in myocardial infarction. J Intern Med 225:333–336, 1989

    Google Scholar 

  38. Lefer AM, Tsao P, Aoki N, Palladino MA, Jr: Mediation of cardioprotection by transforming growth factor-beta. Science 249:61–64, 1990

    Google Scholar 

  39. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O: Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486, 1995

    Google Scholar 

  40. Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P: Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–1093, 1998

    Google Scholar 

  41. Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B: The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 90:693–698, 1992

    Google Scholar 

  42. Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL: Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052, 1995

    Google Scholar 

  43. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL: Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493, 1995

    Google Scholar 

  44. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, and Mann DL: Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711, 1996

    Google Scholar 

  45. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V,Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA: Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865, 1996

    Google Scholar 

  46. Eddy LJ, Goeddel DV, Wong GH: Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 184:1056–1059, 1992

    Google Scholar 

  47. Nakano M, Knowlton AA, Dibbs Z, Mann DL: Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97:1392–1400, 1998

    Google Scholar 

  48. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL: Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA 97:5456–5461, 2000

    Google Scholar 

  49. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr: NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683, 1998

    Google Scholar 

  50. Barth E, Stammler G, Speiser B, Schaper J: Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24:669–681, 1992

    Google Scholar 

  51. Zou H, Li Y, Liu X, Wang X: An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556, 1999

    Google Scholar 

  52. Du C, Fang M, Li Y, Li L, Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42, 2000

    Google Scholar 

  53. Verhagen AM, Ekert PG, Pakusch M, Silk J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53, 2000

    Google Scholar 

  54. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aepersold R, Siderovski DP, Penninger JM, and Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446, 1999

    Google Scholar 

  55. Li LY, Luo X, Wang X: Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99, 2001

    Google Scholar 

  56. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D: Mitochondrial endonuclease G is important for apoptosis in C elegans. Nature 412:90–94, 2001

    Google Scholar 

  57. Green DR, Reed JC: Mitochondria and apoptosis. Science 281:1309–1312, 1998

    Google Scholar 

  58. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, and Reed JC: Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757, 1999

    Google Scholar 

  59. Borutaite V, Morkuniene R, Brown GC: Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453:41–48, 1999

    Google Scholar 

  60. Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL,Srinivasan A, Kitsis, RN: The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403–414, 1999

    Google Scholar 

  61. Cook SA, Sugden PH, Clerk A: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: Association with changes in mitochondrial membrane potential. Circ Res 85:940–949, 1999

    Google Scholar 

  62. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC, III, Nunez G: ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70-e77, 1999

    Google Scholar 

  63. von Harsdorf R, Li PF, Dietz R: Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941, 1999

    Google Scholar 

  64. Malhotra R, Brosius FC, III: Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567–12575, 1999

    Google Scholar 

  65. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, and Kharpanda S: Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96:8144–8149, 1999

    Google Scholar 

  66. De Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum, LA: Caspase activation and mitochondrial cytochrome c release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32:53–63, 2000

    Google Scholar 

  67. Xiao Y, He J, Gilbert RD, Zhang L: Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. J Pharmacol Exp Ther 292:8–14, 2000

    Google Scholar 

  68. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S: Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes J Biol Chem 277:10244–10250, 2002

    Google Scholar 

  69. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S: Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125, 2000

    Google Scholar 

  70. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA: Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728, 2001

    Google Scholar 

  71. Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, Latchman DS: Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90:745–748, 2002

    Google Scholar 

  72. Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J: Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: Fragile balance of myocyte survival? J Am Coll Cardiol 39:481–488, 2002

    Google Scholar 

  73. Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281:1322–1326, 1998

    Google Scholar 

  74. Chao DT, Korsmeyer SJ: BCL-2 family: Regulators of cell death Annu Rev Immunol 16:395–419, 1998

    Google Scholar 

  75. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291, 1995

    Google Scholar 

  76. Gajewski TF, Thompson CB: Apoptosis meets signal transduction: Elimination of a BAD influence Cell 87:589–592, 1996

    Google Scholar 

  77. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM: Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968, 1997

    Google Scholar 

  78. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501, 1998

    Google Scholar 

  79. Luo X, Budihardjo I, Zou H, Slaughter C, Wang, X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490, 1998

    Google Scholar 

  80. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ: BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711, 2001

    Google Scholar 

  81. Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377, 2000

    Google Scholar 

  82. Zha J, Harada H, Yang E, Jocket J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14—3—3 not BCL-X(L). Cell 87:619–628, 1996

    Google Scholar 

  83. Wang HG, Pathan N, Ethell JM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed, JC: Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343, 1999

    Google Scholar 

  84. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH Krajewski S, Reed JC, Olivetti G, Anversa, P: Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107, 1996

    Google Scholar 

  85. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H: Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512, 1996

    Google Scholar 

  86. Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G: Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078, 1999

    Google Scholar 

  87. Latif N, Khan MA, Birks E, O'Farrell A, Westbrook J, Dunn MJ, Yacoub MH: Upregulation of the Bcl-2 family of proteins in end-stage heart failure. J Am Coll Cardiol 35:1769–1777, 2000

    Google Scholar 

  88. Jung F, Weiland U, Johns RA, Ihling C, Dimmeler S: Chronic hypoxia induces apoptosis in cardiac myocytes: A possible role for Bcl-2—like proteins. Biochem Biophys Res Commun 286:419–425, 2001

    Google Scholar 

  89. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa, P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local reninangiotensin system and decreases the Bcl-2—to-Bax protein ratio in the cell. J Clin Invest 101:1326–1342, 1998

    Google Scholar 

  90. Fortuno MA, Ravassa S, Etayo JC, Diez J: Overexpression of Bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: Effects of AT1 blockade with losartan. Hypertension 32:280–286, 1998

    Google Scholar 

  91. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH: Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84:21–33, 1999

    Google Scholar 

  92. Liu L, Azhar G, Gao W, Zhang X, Wei JY: Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: Age-associated differences. Am J Physiol 275:R315-R322, 1998

    Google Scholar 

  93. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH: Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313-H2320, 2001

    Google Scholar 

  94. Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, Burdick J, Woo YJ, Gardner TJ, Sweeney, HL: Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:1212–1217, 2002

    Google Scholar 

  95. Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y: Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8:367–376, 2001

    Google Scholar 

  96. Regula KM, Ens K, Kirshenbaum LA: Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231, 2002

    Google Scholar 

  97. Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, Aronow BJ, Lorenz JN, Dorn GW: Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 8:725–730, 2002

    Google Scholar 

  98. Troy CM, Salvesen GS: Caspases on the brain. J Neurosci Res 69:145–150, 2002

    Google Scholar 

  99. Cohen GM: Caspases: the executioners of apoptosis. Biochem J 326(Pt1):1–16, 1997

    Google Scholar 

  100. Thornberry NA, Lazebnik Y: Caspases: Enemies within. Science 281:1312–1316, 1998

    Google Scholar 

  101. Yue TL, Wang C, Romanic AM, Kikly K, Keller P, DeWolf WE, Jr, Hart TK, Thomas HC, Storer B, Gu JL, Xang X, and Feuerstein GZ: Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. J Mol Cell Cardiol 30:495–507, 1998

    Google Scholar 

  102. Yaoita H, Ogawa K, Maehara K, Maruyama Y: Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281, 1998

    Google Scholar 

  103. Mocanu MM, Baxter GF, Yellon DM: Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol 130:197–200, 2000

    Google Scholar 

  104. Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, Becker LB, Hamann KJ: Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol Heart Circ Physiol 284:H141-H150, 2003

    Google Scholar 

  105. Gottlieb RA, Gruol DL, Zhu JY, Engler RL: Preconditioning rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 97:2391–2398, 1996

    Google Scholar 

  106. Li HL, Karwatowska-Prokopezuk E, Mutomba M, Wu J, Karanewsky D, Valentino K, Engler RL, Gottlieb RA: Pharmacology of caspase inhibitors in rabbit cardiomyocytes subjected to metabolic inhibition and recovery. Antioxid Redox Signal 3:113–123, 2001

    Google Scholar 

  107. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL: Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715, 1999

    Google Scholar 

  108. Condorelli G, Roncarati R, Ross J, Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, and Croce CM: Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982, 2001

    Google Scholar 

  109. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman, DS: Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 8:434–435, 2001

    Google Scholar 

  110. Laugwitz KL, Moretti A, Weig HJ, Gillitzer A, Pinkernell K, Ott T, Pragst I, Stadele C, Seyfarth M, Schomig A, and Ungerer M: Blocking caspaseactivated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063, 2001

    Google Scholar 

  111. Moretti A, Weig HJ, Ott T, Seyfarth M, Holthoff HP, Grewe D, Gillitzer A, Bott-Flugel L, Schomig A, Ungerer M, and Laugwitz KL: Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci USA 99:11860–11865, 2002

    Google Scholar 

  112. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ: Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256, 2002

    Google Scholar 

  113. Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindale D, Koop BF, Peterson EP, Jhornberry NA, Hayden MR, Roy S, and Nicholson DX: Cell death attenuation by “Usurpin,” a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex Cell Death Differ 5:271–288, 1998

    Google Scholar 

  114. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C: Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195, 1997

    Google Scholar 

  115. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike, H: Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility toFas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128, 2003

    Google Scholar 

  116. Koseki T, Inohara N, Chen S, Nunez G: ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160, 1998

    Google Scholar 

  117. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT: The apoptotic regulatory protein ARC (apoptosis represser with caspase recruitment domain) prevents oxidantstress-mediated cell death by preserving mitochondrial function. J Biol Chem 276:33915–33922, 2001

    Google Scholar 

  118. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA: TAT protein transduction into isolated perfused hearts: TAT-apoptosis represser with caspase recruitment domain is cardioprotective. Circulation 106:735–739, 2002

    Google Scholar 

  119. Fleury C, Mignotte B, Vayssiere JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141, 2002

    Google Scholar 

  120. Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA: Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 284:C562-C570, 2003

    Google Scholar 

  121. Zweier JL, Flaherty JT, Weisfeldt ML: Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407, 1987

    Google Scholar 

  122. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB: Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583, 1997

    Google Scholar 

  123. Oskarsson HJ, Coppey L, Weiss RM, Li WG: Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc Res 45:679–687, 2000

    Google Scholar 

  124. Maulik N, Yoshida T, Das DK: Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 196:13–21, 1999

    Google Scholar 

  125. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH: Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289, 1998

    Google Scholar 

  126. Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK: Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 86:264–269, 2000

    Google Scholar 

  127. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J: Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409, 2002

    Google Scholar 

  128. Rabkin SW, Kong JY: Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. Eur J Pharmacol 388:209–217, 2000

    Google Scholar 

  129. Communal C, Singh K, Pimentel DR, Colucci WS: Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334, 1998

    Google Scholar 

  130. Henaff M, Antoine S, Mercadier JJ, Coulombe A, Hatem SN: The voltage-independent B-type Ca2+ channel modulates apoptosis of cardiac myocytes. FASEB J 16:99–101, 2002

    Google Scholar 

  131. Miyamae M, Camacho SA, Weiner MW, Figueredo VM: Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+m overload in rat hearts. Am J Physiol 271:H2145-H2153, 1996

    Google Scholar 

  132. Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642, 1998

    Google Scholar 

  133. Crompton M: The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249, 1999

    Google Scholar 

  134. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B: The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165, 1997

    Google Scholar 

  135. Nazaret W, Yafei N, Crompton M: Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354, 1991

    Google Scholar 

  136. Griffiths EJ, Halestrap AP: Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469, 1993

    Google Scholar 

  137. Lacks SA: Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J Biol Chem 256:2644–2648, 1981

    Google Scholar 

  138. Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, Tschopp J: Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 12:371–377, 1993

    Google Scholar 

  139. Yao M, Keogh A, Spratt P, dos Remedios CG, Kiessling PC: Elevated DNase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J Mol Cell Cardiol 28:95–101, 1996

    Google Scholar 

  140. Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR, Kajstura J, Anversa P: Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 30:519–535, 1998

    Google Scholar 

  141. Croall DE, DeMartino GN: Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 71:813–847, 1991

    Google Scholar 

  142. Yoshida K, Yamasaki Y, Kawashima S: Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim Biophys Acta 1182:215–220, 1993

    Google Scholar 

  143. Toda G, Matsushita S, Kuramoto K, Oda S, Ezaki H, Hattori A, Kawashima S: Calcium-activated neutral protease inhibitor (E-64c) and reperfusion for experimental myocardial infarction. Jpn Heart J 30:375–386, 1989

    Google Scholar 

  144. Kakkar R, Wang X, Radhi JM, Rajala RV, Wang R, Sharma, RK: Decreased expression of high-molecular-weight calmodulin-binding protein and its correlation with apoptosis in ischemia-reperfused rat heart. Cell Calcium 29:59–71, 2001

    Google Scholar 

  145. Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M,Kawamura S, Tatsuno H, Ikeda Y, Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 33:580–586, 1999

    Google Scholar 

  146. Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT: Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303–317, 2000

    Google Scholar 

  147. Jayaraman T, Marks AR: Calcineurin is downstream of the inositol 1, 4, 5—trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 275:6417–6420, 2000

    Google Scholar 

  148. Shibasaki F, McKeon F: Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J Cell Biol 131:735–743, 1995

    Google Scholar 

  149. Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I: β-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533, 2000

    Google Scholar 

  150. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN, Molkentir JD: Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 86:255–263, 2000

    Google Scholar 

  151. Lotem J, Kama R, Sachs L: Suppression or induction of apoptosis by opposing pathways downstream from calcium-activated calcineurin. Proc Natl Acad Sci USA 96:12016–12020, 1999

    Google Scholar 

  152. Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180, 1999

    Google Scholar 

  153. Sugden PH, Clerk A: “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352, 1998

    Google Scholar 

  154. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, and Molkenth JD: Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677, 2001

    Google Scholar 

  155. Cook SA, Sugden PH, Clerk, A: Activation of c-Jun N-terminal kinases and p38—mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434, 1999

    Google Scholar 

  156. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160, 1994

    Google Scholar 

  157. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ: JNK1; A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037, 1994

    Google Scholar 

  158. Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL: Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem 271:3229–3237, 1996

    Google Scholar 

  159. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331, 1995

    Google Scholar 

  160. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben Levy R, Ashworth A, Marshall CJ, Sugden, PH: Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173, 1996

    Google Scholar 

  161. Knight RJ, Buxton DB: Stimulation of c-Jun kinase and mitogenactivated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218:83–88, 1996

    Google Scholar 

  162. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF Hai T, Whelan J: Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950, 1997

    Google Scholar 

  163. He H, Li HL, Lin A, Gottlieb RA: Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6:987–991, 1999

    Google Scholar 

  164. Yue TL, Ma XL, Gu JL, Ruffolo RR, Jr, Feuerstein GZ: Carvedilol inhibits activation of stress-activated protein kinase and reduces reperfusion injury in perfused rabbit heart. Eur J Pharmacol 345:61–65, 1998

    Google Scholar 

  165. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA: Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571, 2002

    Google Scholar 

  166. Wang Y, Huang S, Sah VP, Ross J, Jr, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168, 1998

    Google Scholar 

  167. Mackay K, Mochly-Rosen D: An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem 274:6272–6279, 1999

    Google Scholar 

  168. Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, and Komuro I: MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100:2100–2107, 1999

    Google Scholar 

  169. Adam JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW: Enhanced Galphaq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145, 1998

    Google Scholar 

  170. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR: Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 272:5783–5791, 1997

    Google Scholar 

  171. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein, EH: Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699, 2000

    Google Scholar 

  172. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699, 2000

    Google Scholar 

  173. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR,Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, and Molkentin JD: The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350, 2000

    Google Scholar 

  174. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M,Shiojima I, Hiroi Y, Yazaki Y: Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100:1813–1821, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta A. Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafsson, Å.B., Gottlieb, R.A. Mechanisms of Apoptosis in the Heart. J Clin Immunol 23, 447–459 (2003). https://doi.org/10.1023/B:JOCI.0000010421.56035.60

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000010421.56035.60

Navigation