Skip to main content
Log in

Synthesis and characterization of partially biodegradable and thermosensitive hydrogel

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A partially biodegradable and thermosensitive hybrid hydrogel network (DAN series) based on dextran-allylisocyanate (Dex-AI) and poly(N-isopropylacrylamide) (PNIPAAm) was synthesized via UV photocrosslinking. These hybrid hydrogels were characterized in terms of their chemical structure, thermal, mechanical, morphological and temperature-induced swelling properties. The effect of the composition ratio of Dex-AI to PNIPAAm on such properties were examined. The differential scanning calorimetry data show that this Dex-AI/PNIPAAm hybrid network has an increased lower critical solution temperature (LCST) and glass transition temperature (Tg) with an increase in the Dex-AI content. The interior morphology of these hybrid hydrogels revealed a decreased porous microstructure with an increase in the Dex-AI content in the hybrid network. Furthermore, if the Dex-AI composition became too high, a distinctive network structure with two different microporous structures appeared. The mechanical properties of these hybrid hydrogels also increased with an increase in the Dex-AI content. The temperature dependence of the swelling ratio, the deswelling kinetics as well as the reswelling kinetics was also characterized by gravimetric method. When comparing with a normal PNIPAAm hydrogel, these Dex-AI/PNIPAAm hybrid networks, due to the presence of Dex-AI moiety, also show improved temperature-induced intelligent properties, such as the faster and controllable response dynamics, which may find promising applications in a wide variety of fields, such as biomedical and bioengineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hirokawa and T. Tanaka, J. Chem. Phys. 81 (1984) 6379.

    Article  Google Scholar 

  2. Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, Y. Sakurai and T. Okano, Macromolecules 27 (1994) 6163.

    Google Scholar 

  3. X. Z. Zhang and R. X. Zhuo, Macromol. Chem. Physic. 200 (1999) 2602.

    Article  Google Scholar 

  4. B. Jeong, Y. H. Bae, D. S. Lee and S. W. Kim, Nature 388 (1997) 860.

    Article  PubMed  Google Scholar 

  5. B. Jeong, Y. H. Bae and S. W. Kim, J. Contrl. Rel. 63 (2000) 155.

    Article  Google Scholar 

  6. B. Jeong, S. W. Kim and Y. H. Bae, Adv. Drug. Delver. Rev. 54 (2002) 37.

    Article  Google Scholar 

  7. Y. Kumashiro, K. M. Huh, T. Ooya and N. Yui, Biomacromolecules 2 (2001) 874.

    Article  PubMed  Google Scholar 

  8. P. Y. P. Kuo and W. M. Saltzman, Crit. Rev. Eukaryotic. Gene Expr. 6 (1996) 59.

    Google Scholar 

  9. Y. L. Zhang and C. C. Chu, ibid. 59 (2002) 318.

    Google Scholar 

  10. S. H. Kim and C. C. Chu, J. Biomater. Appl. 15 (2000) 23.

    Article  PubMed  Google Scholar 

  11. Y. L. Zhang and C. C. Chu, ibid. 16 (2002) 305.

    PubMed  Google Scholar 

  12. C. Y. Won and C. C. Chu, Carbohydr. Polym. 36 (1998) 327.

    Article  Google Scholar 

  13. Y. L. Zhang, C. Y. Won and C. C. Chu, J. Polym. Sci.: Polym. Chem. 38 (2000) 2392.

    Article  Google Scholar 

  14. J. Chen, S. Jo and K. Park, Carbohydr. Polym. 28 (1995) 69.

    Article  Google Scholar 

  15. L. D. Taylor and L. D. Cerankowski, J. Polym. Sci.: Polym. Chem. Ed. 13 (1975) 2551.

    Article  Google Scholar 

  16. X. P. Qiu and C. Wu, Macromolecules 30 (1997) 7921.

    Article  Google Scholar 

  17. X. P. Qiu, C. M. S. Kwan and C. Wu, ibid. 30 (1997) 6090.

    Article  Google Scholar 

  18. M. Shibayama, K. Kawakubo and T. Norisuye, ibid. 31 (1998) 1608.

    Article  Google Scholar 

  19. B. G. Stubbe, F. Horkay, B. Amsden, W. E. Hennink, S. C. De Smedt and J. Demeester, Biomacromolecules 4 (2003) 691.

    Article  PubMed  Google Scholar 

  20. K. Z. Gumargalieva, O. V. Shipunova, G. E. Zaikov, B. A. Jubanov and S. A. Moshkevitch, Polym. Degrad. Stabil. 51 (1996) 57.

    Article  Google Scholar 

  21. W. N. E. Van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. Van Steenbergen, S. K. Y. Tsang and W. E. Hennink, Macromolecules 30 (1997) 4639.

    Article  Google Scholar 

  22. O. Franssen, R. D. Van Ooijen, D. De Boer, R. A. A. Maes and W. E. Hennink, ibid. 32 (1999) 2896.

    Article  Google Scholar 

  23. C. J. De Groot, M. J. A. Van Luyn, W. N. E. Van Dijk-Wolthuis, J. A. Cadée, J. A. Plantinga, W. Den Otter and W. E. Hennink, Biomaterials 22 (2001) 1197.

    Article  PubMed  Google Scholar 

  24. Y. L. Zhang and C. C. Chu, J. Mater. Sci.: Mater. M. 13 (2002) 667.

    Article  Google Scholar 

  25. X. Z. Zhang, Y. Y. Yang, T. S. Chung and K. X. Ma, Langmuir 17 (2001) 6094.

    Article  Google Scholar 

  26. X. Z. Zhang, Y. Y. Yang and T. S. Chung, J. Colloid Interf. Sci. 246 (2002) 105.

    Article  Google Scholar 

  27. H. Inomato, S. Goto and S. Saito, Macromolecules 23 (1990) 4887.

    Google Scholar 

  28. H. Feil, Y. H. Bae, J. Feijen and S. W. Kim, ibid. 26 (1993) 2496.

    Google Scholar 

  29. T. Tokuhiro, T. Amiya, A. Mamada and T. Tanaka, ibid. 24 (1991) 2936.

    Google Scholar 

  30. G. Bokias, D. Hourdet, I. Iliopoulos, G. Staikos and R. Audebert, ibid. 30 (1997) 8293.

    Article  Google Scholar 

  31. B. Vernon, S. W. Kim and Y. H. Bae, J. Biomed. Mater. Res. 51 (2000) 69.

    Article  PubMed  Google Scholar 

  32. M. Shibayama, Y. Fujikawa and S. Nomura, Macromolecules 29 (1996) 6535.

    Article  Google Scholar 

  33. E. S. Matsuo and T. Tanaka, J. Chem. Phys. 89 (1988) 1695.

    Article  Google Scholar 

  34. X. Z. Zhang and R. X. Zhuo, Langmuir 17 (2001) 12.

    Article  Google Scholar 

  35. X. Z. Zhang, D. Q. Wu and C. C. Chu, J. Polym. Sci.: B Polym. Phys. 41 (2003) 582.

    Article  Google Scholar 

  36. R. G. Sousa, W. F. Magalhaes and R. F. S. Freitas, Polym. Deg. Stab. 61 (1998) 275.

    Article  Google Scholar 

  37. E. Diez-Pena, I. Quijada-Garrido, P. Frutos and J. M. Barrales-Rienda, Macromolecules 35 (2002) 2667.

    Article  Google Scholar 

  38. Y. L. Zhang and C. C. Chu, J. Mater. Sci.: Mater. M. 13 (2002) 773.

    Article  Google Scholar 

  39. X. Z. Zhang, Y. Y. Yang, F. J. Wang and T. S. Chung, Langmuir 18 (2002) 2013.

    Article  Google Scholar 

  40. J. Kopecek, Nature 417 (2002) 388.

    Article  PubMed  Google Scholar 

  41. X. Z. Zhang, R. X. Zhuo and Y. Y. Yang, Biomaterials 23 (2002) 1313.

    Article  PubMed  Google Scholar 

  42. Y. H. Bae, T. Okano and S. W. Kim, Makromol. Chem. Rapid. Commun. 9 (1988) 185.

    Article  Google Scholar 

  43. Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai and Y. Okano, Macromolecules 28 (1995) 7717.

    Google Scholar 

  44. R. Yoshida, Y. Okuyama, K. Sakai, T. Okano and Y. Sakurai, J. Membr. Sci. 89 (1994) 267.

    Article  Google Scholar 

  45. D. J. Enscore, H. B. Hopfrnberg and V. T. Stannett, Polymer 18 (1977) 793.

    Article  Google Scholar 

  46. X. Z. Zhang and R. X. Zhuo, J. Colloid Interf. Sci. 223 (2000) 311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Chang Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XZ., Sun, GM., Wu, DQ. et al. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel. Journal of Materials Science: Materials in Medicine 15, 865–875 (2004). https://doi.org/10.1023/B:JMSM.0000036274.83104.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036274.83104.fe

Keywords

Navigation