Skip to main content
Log in

An Improved Force Field for O2, CO and CN Binding to Metalloporphyrins

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes is applied to heme complexes. The principal new feature peculiar to five and six coordination is a term that represents the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different possible structures of complexes. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The macrocycle heme IX is wholly considered in our model. The calculations show clearly that certain conformations of heme IX–histidine models are much more favourable than others for fixing O2. From the O2 binding in haemoglobin and myoglobin and in simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide, O2 . Rotation of axial ligands are practically free. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Perutz: Proc. R. Soc. London, B 208, 135 (1980).

    Google Scholar 

  2. M.F. Perutz, G. Fermi, B. Luisi, B. Shaanan, and R.C. Liddington: Acc. Chem. Res. 20, 309 (1987).

    Google Scholar 

  3. K.G. Welinder: Curr. Opin. Struct. Biol. 2, 388 (1992).

    Google Scholar 

  4. B.G. Malmström: Chem. Rev. 90, 1247 (1990).

    Google Scholar 

  5. M. Sono, M.P. Roach, E.D. Coulter, and J.H. Dawson: Chem. Rev. 96, 2841 (1996).

    Google Scholar 

  6. J. Barber and B. Andersson: Nature (London) 370, 31 (1994).

    Google Scholar 

  7. C.L. Drennan, S. Huang, J.T. Drummond, R.G. Matthews, and M.L. Ludwig: Science 266, 1669 (1994).

    Google Scholar 

  8. M.A. Halcrow and G. Christou: Chem. Rev. 94, 2421 (1994).

    Google Scholar 

  9. M. Momenteau and C.A. Reed: Chem. Rev. 94, 659 (1994).

    Google Scholar 

  10. A. Dedieu, M.-M. Rohmer, and A. Veillard: Adv. Quantum Chem. 16, 43 (1982).

    Google Scholar 

  11. M.-M. Rohmer, A. Dedieu, and A. Veillard: Chem. Phys. 77, 449 (1983).

    Google Scholar 

  12. M.-M. Rohmer: Chem. Phys. Lett. 116, 44 (1985).

    Google Scholar 

  13. N. Li, Z. Su, P. Coppens, and J. Landrum: J. Am. Chem. Soc. 112, 7294 (1990).

    Google Scholar 

  14. T.G. Spiro and P.M. Kozlowski: J. Biol. Inorg. Chem. 2, 516 (1997).

    Google Scholar 

  15. T.G. Spiro and P.M. Kozlowski: J. Am. Chem. Soc. 120, 4524 (1998).

    Google Scholar 

  16. T. Vangberg, D.F. Bocian, and A. Ghosh: J. Biol. Inorg. Chem. 2, 526 (1997).

    Google Scholar 

  17. P. Jewsbury, S. Yamamoto, T. Minato, M. Saito, and T. Kitagawa: J. Am. Chem. Soc. 116, 11586 (1994).

    Google Scholar 

  18. P. Jewsbury, S. Yamamoto, T. Minato, M. Saito, and T. Kitagawa: J. Phys. Chem. 99, 12677 (1995).

    Google Scholar 

  19. A. Ghosh and D.F. Bocian: J. Phys. Chem. 100, 6363 (1996).

    Google Scholar 

  20. E. Sigfridsson and U. Ryde: J. Biol. Inorg. Chem. 4, 99 (1999).

    Google Scholar 

  21. C. Rovira, P. Ballone, and M. Parrinello: Chem. Phys. Lett. 271, 247 (1997).

    Google Scholar 

  22. C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello: J. Phys. Chem. A 101, 8914 (1997).

    Google Scholar 

  23. C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello: Int. J. Quantum Chem. 69, 31 (1998).

    Google Scholar 

  24. C. Rovira and M. Parrinello: Chem. Eur. J. 5, 250 (1999).

    Google Scholar 

  25. C. Rovira, P. Carloni, and M. Parrinello: J. Phys. Chem. B 103, 7031 (1999).

    Google Scholar 

  26. R. Salzmann, M.T. McMahon, N. Godbout, L.K. Sanders, M. Wojdelski, and E. Oldfield: J. Am. Chem. Soc. 121, 3818 (1999).

    Google Scholar 

  27. N. Godbout, L.K. Sanders, R. Salzmann, R.H. Havlin, M. Wojdelski, and E. Oldfield: J. Am. Chem. Soc. 121, 3829 (1999).

    Google Scholar 

  28. G. Loew and M. Dupuis: J. Am. Chem. Soc. 118, 10584 (1996).

    Google Scholar 

  29. D.L. Harris and G.H. Loew: J. Am. Chem. Soc. 118, 10588 (1996).

    Google Scholar 

  30. D. Harris, G. Loew, and L. Waskell: J. Am. Chem. Soc. 120, 4308 (1998).

    Google Scholar 

  31. D.E. Woon and G.H. Loew: J. Phys. Chem. A 102, 10380 (1998).

    Google Scholar 

  32. O. Zakharieva, M. Grodzicki, A.X. Trautwein, C. Veeger, and I.M.C.M. Rietgens: J. Biol. Inorg. Chem. 1, 192 (1996).

    Google Scholar 

  33. M.T. Green: J. Am. Chem. Soc. 120, 10772 (1998).

    Google Scholar 

  34. G.B. Jameson, G.A. Rodley, W.T. Robinson, R.R. Gagne, C.A. Reed, and J.P. Collman: Inorg. Chem. 17, 850 (1978).

    Google Scholar 

  35. G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick: J. Am. Chem. Soc. 102, 3224 (1980).

    Google Scholar 

  36. F. Maseras: New J. Chem. 22, 327 (1998).

    Google Scholar 

  37. J.-D. Maréchal, G. Barea, F. Maseras, A. Lledó s, L. Mouawad, and D. Pérahia: J. Comput. Chem. 21, 282 (2000).

    Google Scholar 

  38. R. Salzmann, C.J. Ziegler, N. Godbout, M.T. McMahon, K.S. Suslick, and E. Oldfield: J. Am. Chem. Soc. 120, 11323 (1998).

    Google Scholar 

  39. S. Han, K. Cho, and J. Ihm: Phys. Rev. E 59, 2218 (1999).

    Google Scholar 

  40. K. Kim, J. Fettinger, J.L. Sessler, M. Cyr, J. Hugdahl, J.P. Collman, and J.A. Ibers: J. Am. Chem. Soc. 111, 403 (1989).

    Google Scholar 

  41. M.P. Johansson, M.R.A. Blomberg, D. Sundholm, and M. Wikström: Biochim. Biophys. Acta 1553, 183 (2002).

    Google Scholar 

  42. M.P. Johansson, D. Sundholm, G. Gerfen, and M. Wikström: J. Am. Chem. Soc. 124, 11771 (2002).

    Google Scholar 

  43. F. Torrens, M. Ruiz-Ló pez, C. Cativiela, J.I. García, and J.A. Mayoral: Tetrahedron 48, 5209 (1992).

    Google Scholar 

  44. F. Torrens: Mol. Simul. 24, 391 (2000).

    Google Scholar 

  45. N.L. Allinger: J. Am. Chem. Soc. 99, 8127 (1977).

    Google Scholar 

  46. F. Torrens: Polyhedron 22, 1091 (2003).

    Google Scholar 

  47. B.T. Thole: Chem. Phys. 59, 341 (1981).

    Google Scholar 

  48. T.L. Hill: J. Chem. Phys. 16, 399 (1948).

    Google Scholar 

  49. J.A. Deiters, J.C. Gallucci, T.E. Clark, and R.R. Holmes: J. Am. Chem. Soc. 99, 5461 (1977).

    Google Scholar 

  50. H. Yow and L.S. Bartell: J. Mol. Struct. 15, 209 (1973).

    Google Scholar 

  51. F. Torrens: J. Phys. Org. Chem. 15, 742 (2002).

    Google Scholar 

  52. R.S. Mulliken: J. Chem. Phys. 2, 782 (1934).

    Google Scholar 

  53. J.E. Huheey: J. Phys. Chem. 69, 3284 (1965).

    Google Scholar 

  54. R.T. Sanderson: Science 114, 670 (1951).

    Google Scholar 

  55. R.S. Mulliken, C.A. Rieke, D. Orloff, and H. Orloff: J. Chem. Phys. 17, 1248 (1949).

    Google Scholar 

  56. C. Joachim, G. Treboux, and H. Tang: A model conformational flip-flop molecular switch. In Molecular Electronics: Science and Technology, AIP Conference Proceedings Vol. 262, AIP, New York (1992), pp. 107-117.

    Google Scholar 

  57. A.I. Vogel: J. Chem. Soc. 1833 (1948).

  58. N. Gresh, P. Claverie, and A. Pullman: Int. J. Quantum Chem. Symp. 13, 243 (1979).

    Google Scholar 

  59. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff: J. Am. Chem. Soc. 114, 10024 (1992).

    Google Scholar 

  60. M. Momenteau, W.R. Scheidt, C.W. Eigenbrot, and C.A. Reed: J. Am. Chem. Soc. 110, 1207 (1988).

    Google Scholar 

  61. J.J. Weiss: Nature (London) 202, 83 (1964).

    Google Scholar 

  62. H.P. Misra and I. Fridovich: J. Biol. Chem. 247, 6960 (1972).

    Google Scholar 

  63. L. Pauling: Proc. Natl. Acad. Sci. USA 74, 2612 (1977).

    Google Scholar 

  64. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart: J. Am. Chem. Soc. 107, 3902 (1985).

    Google Scholar 

  65. R. Huber, O. Epp, and H. Formanek: J. Mol. Biol. 52, 349 (1970).

    Google Scholar 

  66. E.A. Padian and W.E. Love: J. Biol. Chem. 249, 4067 (1974).

    Google Scholar 

  67. J.C. Norvell, A.C. Nunes, and B.P. Schoenborn: Science 190, 568 (1975).

    Google Scholar 

  68. W.R. Scheidt and K. Hatano: Acta Crystallogr. Sect. C 47, 2201 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrens, F. An Improved Force Field for O2, CO and CN Binding to Metalloporphyrins. Journal of Inclusion Phenomena 49, 37–46 (2004). https://doi.org/10.1023/B:JIPH.0000031111.00613.4c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JIPH.0000031111.00613.4c

Navigation