Skip to main content
Log in

Electron Density Calculation Using the Contact Block Reduction Method

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel efficient method to calculate the ballistic quantum transport in two or three dimensional multi-terminal devices of arbitrary geometry, potential profile and number of leads has been presented. In this work we show that the method termed contact block reduction (CBR) allows calculation of not only the transmission function, but the electron density and density matrix of the device as well. The calculation costs are mainly determined by the size of the contact boundaries of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lee Ross, S.P. Svensson, and P. Lugli (eds.), Pseudomorphic Hemt Technology and Applications, NATO Asi Series.

  2. Series E., Applied Sciences, 309 (1996).

  3. D.K. Ferry, R. Akis, and J.P. Bird, Superlattices and Microstructures, 23, 611 (1998).

    Google Scholar 

  4. W.Z. Shangguan, T.C. Au Yeung, Y.B. Yu, and C.H. Kam, Phys. Rev. B, 63, 235323 (2001).

    Google Scholar 

  5. H. Frohne, M. McLennan, and S. Datta, J. Appl. Phys., 66, 2699 (1989).

    Google Scholar 

  6. P.A. Knipp and T.L. Reinecke, Phys. Rev. B, 54, 1880 (1996).

    Google Scholar 

  7. S. Rotter, J.-Z. Tang, L.Wirtz, J. Trost, and J. Burgdörfer, Phys. Rev. B, 62, 1950 (2000).

    Google Scholar 

  8. C. Berger, Y. Yi, Z.L. Wang, and W.A. de Heer, Appl. Phys. A, 74, 363 (2002).

    Google Scholar 

  9. M.B. Nardelli, J.-L. Fattebert, and J. Bernholc, Phys. Rev. B, 64, 245423 (2001).

    Google Scholar 

  10. C. Roland, V. Meunier, B. Larade, and H. Guo, Phys. Rev. B, 66, 035332 (2002).

    Google Scholar 

  11. J.L. Mozos, P. Ordejon, M. Brandbyge, J. Taylor, and K. Stokbro, Nanotechnology, 13, 346 (2002).

    Google Scholar 

  12. Z. Ren, R. Venugopal, S. Datta, M. Lundstrom, D. Jovanovic, and J. Fossum, IEDM, 715 (2000).

  13. W. Chen, L.F. Register, and S.K. Banerjee, IEEE Trans. El. Dev., 49, 652 (2002).

    Google Scholar 

  14. P. Brodone, M. Pascoli, R. Brunetti, A. Bertoni, and C. Jacoboni, Phys. Rev. B, 59, 3060 (1998).

    Google Scholar 

  15. R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys., 81, 7845 (1997).

    Google Scholar 

  16. A. Haque and A.N. Khondker, J. Appl. Phys., 87, 2553 (2000).

    Google Scholar 

  17. M.V. Fischetti, Phys. Rev. B, 59, 4901 (1998).

    Google Scholar 

  18. R. Landauer, Physica Scripta T, 42, 110 (1992).

    Google Scholar 

  19. M. Büttiker, IBM J. Res. Dev., 32, 317 (1988).

    Google Scholar 

  20. E.O. Kane, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundqvist (Plenum, New York, 1969), p. 1

    Google Scholar 

  21. J.N. Schulman and Y.C. Chang, Phys. Rev. B, 27, 2346 (1983).

    Google Scholar 

  22. C. Mailhiot and D.L. Smith, Phys. Rev. B, 33, 8360 (1986).

    Google Scholar 

  23. W. Frensley, Rev. Mod. Phys., 62, 745 (1990).

    Google Scholar 

  24. W. Frensley, http://www.utdallas.edu/~frensley/technical/ qtrans/qtrans.html.

  25. C. Lent and D. Kirkner, J. Appl. Phys., 67, 6353 (1990).

    Google Scholar 

  26. Z.-Y. Ting, E.T. Yu, and T.C. McGill, Phys. Rev. B, 45, 3583 (1992).

    Google Scholar 

  27. Y.X. Liu, D.Z.-Y. Ting, and T.C. McGill, Phys. Rev. B, 54, 5675 (1996).

    Google Scholar 

  28. E.S. Daniel, X. Cartoixa, W. Frensley, D.Z.-Y. Ting, and T.C. McGill, IEEE Trans. Electron Devices, 47, 1052 (2000).

    Google Scholar 

  29. C. Strahberger and P. Vogl, Phys. Rev. B, 62, 7289 (2000).

    Google Scholar 

  30. E. Polizzi and N.B. Abdallah, J. Appl. Phys. 87, 8700 (2000).

    Google Scholar 

  31. P.A. Ramachandran, Boundary Element Methods in Transport Phenomena (WIT Press, 1993).

  32. H. Frohne, M. McLennan, and S. Datta, J. Appl. Phys., 66, 2699 (1989).

    Google Scholar 

  33. P.A. Knipp and T.L. Reinecke, Phys. Rev. B, 54, 1880 (1996).

    Google Scholar 

  34. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, and R. Venugopal, J. Appl. Phys., 91, 2343 (2002).

    Google Scholar 

  35. R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, and D. Jovanovic, J. Appl. Phys., 92, 3730 (2002).

    Google Scholar 

  36. S. Rotter, J.-Z. Tang, L.Wirtz, J. Trost, and J. Burgdörfer, Phys. Rev. B, 62, 1950 (2000).

    Google Scholar 

  37. D. Mamaluy, M. Sabathil, and P. Vogl, J. Appl. Phys., 93, 4628 (2003).

    Google Scholar 

  38. Supriyo Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  39. M. Sabathil, S. Birner, D. Mamaluy, and P. Vogl, J. Comp. Electronics, 2, 269 (2003).

    Google Scholar 

  40. A. Di Carlo, P. Vogl, and W. Pötz, Phys. Rev. B, 50, 8358 (1994).

    Google Scholar 

  41. S. Datta, Superlattices and Microstructures, 28, 253 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamaluy, D., Mannargudi, A. & Vasileska, D. Electron Density Calculation Using the Contact Block Reduction Method. Journal of Computational Electronics 3, 45–50 (2004). https://doi.org/10.1023/B:JCEL.0000029455.15886.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000029455.15886.cb

Navigation