Skip to main content
Log in

BioMOCA: A Transport Monte Carlo Model for Ion Channels

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Ion channels are proteins that form natural water-filled nanotubes in the membranes of all biological cells. They regulate ion transport in and out of the cell thereby maintaining the correct internal ion composition that is crucial to cell survival and function. Every channel carries a strong permanent charge, which plays a critical role in the conduction mechanisms of the open channel. Many channels can selectively transmit or block a particular ion species and most have switching properties similar to electronic devices. These device-like features are appealing to the electronics community for their possible application in the design of novel bio-devices. Here we describe a three-dimensional (3-D) transport Monte Carlo ion channel simulation, BioMOCA, based on the approach taken in semiconductor device simulations. Since ion diameters are comparable with channel dimensions a physical model of the volume of the ions must also be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hille, Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, Mass. 1992).

    Google Scholar 

  2. B. Roux, Curr. Op. Struc. Biol., 12, 182 (2002).

    Google Scholar 

  3. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, New York, 1984).

    Google Scholar 

  4. T.A. van der Straaten, J.M. Tang, U. Ravaioli, R.S. Eisenberg, and N.R. Aluru, J. Comp. Elec., (2003) in press.

  5. T.A. van der Straaten, J.M. Tang, U. Ravaioli, R.S. Eisenberg, and N.R. Aluru, J. Comp. Elec.,1, 335 (2002).

    Google Scholar 

  6. T. van der Straaten, S. Varma, S.-W. Chiu, J. Tang, N. Aluru, R. Eisenberg, U. Ravaioli and E. Jakobsson, in Technical Proceedings of the Second International Conference on Computational Nanoscience and Nanotechnology (Computational Publications, Cambridge MA, 2002), p. 60.

    Google Scholar 

  7. U. Hollerbach, D. Chen, W. Nonner, and B. Eisenberg, Biophys. J., 76, A205 (1999).

    Google Scholar 

  8. C. Jacoboni and L. Reggiani, Rev. Mod. Phys., 55, 645 (1983).

    Google Scholar 

  9. K. Hers (ed.), Monte Carlo Device Simulation: Full Band and Beyond (Kluwer, Boston, 1991).

    Google Scholar 

  10. K. Hess, J.P. Leburton, and U. Ravaioli, Computational Electronics (eds.), (Kluwer, Boston, 1991).

    Google Scholar 

  11. R.S. Berry, S.A. Rice, and J. Ross, Physical Chemisty, 2nd ed. (Oxford University Press, New York, 2000), p. 756.

    Google Scholar 

  12. R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (Inst. Phys. Pub., Bristol, 1998), p. 28.

    Google Scholar 

  13. http://www.rcsb.org/pdb/.

  14. http://amber.scripps.edu/dbase.html; http://www.scripps.edu/brooks/charmm docs/charmm.html; http://www.cs.sandia.gov/projects/towhee/forcefields/oplsaa.html; http://www.igc.ethz.ch /gromos; http://www.gromacs.org/.

  15. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 2002), p. 54.

    Google Scholar 

  16. J.O'M. Bockris and A.K.N. Reddy, Modern Electrochemisty, vol. I-Ionics (Plenum Press, New York, 1998).

    Google Scholar 

  17. V.M.M. Lobo, Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties, vols. 1 and 2 (Coimbra Editora, Lisbon, 1984).

    Google Scholar 

  18. S.-W. Chiu, S. Subramaniam, and E. Jakobsson, Biophys. J., 76(4), 1929 (1999).

    Google Scholar 

  19. B.L. de Groot, D.P. Tieleman, P. Pohl, and H. Grubmuller, Biophys. J., 82, 2934 (2002).

    Google Scholar 

  20. R.R. Ketchem, W. Hu, and T.A. Cross, Science, 261, 1457 (1993).

    Google Scholar 

  21. D.R. Lide, editor-in-chief, CRC Handbook of Chemistry and Physics (CRC press, Boca Raton, 1994), p. 5.

    Google Scholar 

  22. T.A. van der Straaten, G. Kathawala, Z. Kuang, D. Boda, D.P. Chen, U. Ravaioli, R.S. Eisenberg, and D. Henderson, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show (Computational Publications, Cambridge MA, 2003), Vol. 3, p. 447.

    Google Scholar 

  23. D.D. Busath, C.D. Thulin, R.W. Hendershot, L.R. Phillips, P. Maughan, C.D. Cole, N.C. Bingham, S. Morrison, L.C. Baird, R.J. Hendershot, M. Cotton, and T.A. Cross, Biophys. J., 75, 2830 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Straaten, T., Kathawala, G. & Ravaioli, U. BioMOCA: A Transport Monte Carlo Model for Ion Channels. Journal of Computational Electronics 2, 231–237 (2003). https://doi.org/10.1023/B:JCEL.0000011430.99984.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCEL.0000011430.99984.cd

Navigation