Skip to main content
Log in

Modeling Active Centers in Ammonia Synthesis. DFT Study of Dissociative Adsorption of N2 on Ru Clusters

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Models of possible active centers (AC) of nitrogen adsorption on ruthenium clusters are suggested. An AC is represented by a labile Run (n = 6, 7) cluster stabilized in carbon nanotubes. Nanotubes are modeled by the C60 cluster. Density functional theory (DFT) is used to calculate the stationary points of the reaction path of dissociative adsorption of N2 on the suggested AC. Optimal structures and transition state (TS) energies are determined. The effect of alkali metal (Cs) additions on the activation energy is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Hardy, F. Bottomley,and R. Burns, Problems of Nitrogen Fixation [Russian translation ], Mir, Moscow (1982).

    Google Scholar 

  2. A. Nielsen and H. Topsoe (eds.), Ammonia. Catalysis and Manufacture, Springer, Berlin (1995).

    Google Scholar 

  3. L. Diekhoner, A. Baurichter, H. Mortensen,and A. C. Luntz, J. Chem. Phys., 112, 2507-2515 (2000).

    Google Scholar 

  4. K. Jacobi, Phys. Status Solidi A, 177, 37-51 (2000).

    Google Scholar 

  5. S. Dahl, E. Törnqvist,and I. Chorkendorff, J. Catal., 192, 381-390 (2000).

    Google Scholar 

  6. S. Dahl, A. Logadottir, R. C. Egeberg, et al., Phys. Rev. Lett., 83, 1814-1817 (1999).

    Google Scholar 

  7. R. C. Egeberg, J. H. Larsen,and I. Chorkendorff, Phys. Chem. Chem. Phys., 3, 2007-2011 (2001).

    Google Scholar 

  8. L. Diekhoner, H. Mortensen, A. Baurichter,and A. C. Luntz, J. Vac. Sci. Technol. A, 18, 1509-1513 (2000).

    Google Scholar 

  9. L. Diekhoner, H. Mortensen, A. Baurichter, et al., Phys. Rev. Lett., 84, 4906-4909 (2000).

    Google Scholar 

  10. M. J. Murphy, J. F. Skelly, A. Hodson,and B. Hammer, J. Chem. Phys., 110, 6954-6962 (1999).

    Google Scholar 

  11. D. C. Papageorgopoulos, B. Berenbak, M. Vermoest, et al., Chem. Phys. Lett., 305, 401-407 (1999).

    Google Scholar 

  12. O. Hinrichsen, F. Rosowski, A. Hornung,et al., J. Catal., 165, 33-44 (1997).

    Google Scholar 

  13. F. Rosowski, A. Hornung, O. Hinrichsen, et al., Appl. Catal., 151, 443-460 (1997).

    Google Scholar 

  14. O. Hinrichsen, Fortschr.-Ber. VDI, Reihe 3, 486, 1-146 (1997).

    Google Scholar 

  15. L. Forni, D. Molinari, I. Rossetti,and N. Pernicone, Appl. Catal. A, 185, 269-275 (1999).

    Google Scholar 

  16. Z. Kowalczuk, S. Jodzis, W. Rarog, et al., ibid., 184, 95-102 (1999).

    Google Scholar 

  17. W. Raróg, Z. Kowalczuk, J. Sentek, et al., Catal. Lett., 68, 163-168 (2000).

    Google Scholar 

  18. N. M. Dobrynkin, P. G. Tsyrulnikov, A. S. Noskov, et al., Stud. Surf. Sci. Catal., 118, 213-218 (1998).

    Google Scholar 

  19. T. Bécue, R. J. Davis,and J. M. Garces, J. Catal., 179, 129-137 (1998).

    Google Scholar 

  20. J. Trost, T. Zambelli, J. Wintterlin,and G. Ertl, Phys. Rev. B, 54, 17850-17857 (1996).

    Google Scholar 

  21. S. Schwegmann, A. P. Seitsonen, H. Dietrich, et al., Chem. Phys. Lett., 264, 680 (1997).

    Google Scholar 

  22. S. Dahl, P. A. Taylor, E. Törnqvist,and I. Chorkendorff, J. Catal., 178, 679-686 (1998).

    Google Scholar 

  23. Y. Izumi and K.-I. Aika, Japan-FSU Catalysis Seminar' 94, Tsukaba, Japan (1994).

    Google Scholar 

  24. D. J. Dooling and L. J. Broadbelt, Stud. Surf. Sci. Catal., 109, 251-259 (1997).

    Google Scholar 

  25. J. J. Mortensen, B. Hammer,and J. K. Nørskov, Surf. Sci., 414, 315-329 (1998).

    Google Scholar 

  26. J. J. Mortensen, B. Hammer,and J. K. Nørskov, Phys. Rev. Lett., 80, 4333-4336 (1998).

    Google Scholar 

  27. J. J. Mortensen, Y. Morikawa, B. Hammer,and J. K. Nørskov, J. Catal., 169, 85-92 (1997).

    Google Scholar 

  28. A. L. Ivanovskii, Quantum Chemistry in Materials Science, Nanotubular Forms of Substance, Ural Branch, Russian Academy of Sciences, Ekaterinburg (1999).

    Google Scholar 

  29. J. P. Sullivan, J. Robertson, O. Zhou, et al., Materials Research Society Symposium Proceedings, Vol. 593, Amorphous and Nanostructured Carbon, Boston MA (1999).

  30. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  31. A. D. Becke, Phys. Rev. A, 33, 2786-2788 (1986); J. Chem. Phys., 98, 5648-5652 (1993).

    Google Scholar 

  32. C. Lee, W. Yang,and R. G. Parr, Phys. Rev. B, 37, 785-789 (1988).

    Google Scholar 

  33. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270-283 (1985).

    Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98, Revision A.7, Gaussian Inc., Pittsburgh PA (1998).

    Google Scholar 

  35. S. Milee, T. Frauenheim, M. Elstner, et al., ref. 29, 187-192.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzankin, S.F., Avdeev, V.I., Dobrynkin, N.M. et al. Modeling Active Centers in Ammonia Synthesis. DFT Study of Dissociative Adsorption of N2 on Ru Clusters. Journal of Structural Chemistry 44, 341–350 (2003). https://doi.org/10.1023/B:JORY.0000009659.26326.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORY.0000009659.26326.cd

Navigation