Skip to main content
Log in

Microfabrication of Piezoelectric MEMS

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this paper we present an overview of processes for fabrication of piezoelectric thin film devices using PZT (Pb(Zr x Ti1 − x )O3) in planar structures. These structures are used in cantilever-like and membrane configurations for sensing and actuation. Elaboration of a compatible wet and dry etching sequence for patterning of PZT, electrodes, SiO2 and silicon substrate is the key issues. The method for compensation of mechanical stresses to obtain flat, multilayer structures is demonstrated. Definition of membrane thickness and release of the structures are obtained by Deep Reactive Ion Etching of silicon (SOI—silicon on insulator substrates) or by surface micromachining. The complete process has been used for fabrication of cantilever arrays, ultrasonic transducers and pressure sensors. Excellent permittivity and transverse piezoelectric coefficient of PZT have been obtained with the final devices. Other examples of applications like: ferroelectric memories, nanopatterning and local growth of PZT are presented as well.

The microfabrication of piezoelectric MEMS was found to be a complex task where all aspects from device design, material properties and microfabrication to assessment of performance are closely interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Muralt, J Micromech. Microeng., 10, 136 (2000).

    Google Scholar 

  2. N. Setter (Ed.), Piezoelectric Materials and Devices, Lausanne (2002).

  3. Y. Miyahara, Appl. Surf. Sci., 140, 428 (1999).

    Google Scholar 

  4. P. Muralt, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(4), 903 (2000).

    Google Scholar 

  5. M. Elwenspoek and H. Jansen, Silicon Micromachining(C.U. Press, Cambridge, 1998

    Google Scholar 

  6. W. Lang, Materials Science and Engineering, R17, 1 (1996).

    Google Scholar 

  7. M. Madou, Fundamentals of Microfabrication(CRCPress, Boca Raton, 1997).

    Google Scholar 

  8. S.J. Gross et al., Proceedings of the SPIE, 4558, 72 (2001).

    Google Scholar 

  9. J. Baborowski, N. Ledermann, S. Gentil, and P. Muralt, The 11th International Conference on Solid-State Sensors and Actuators(Munich, Germany, June 10-14, 2001), p. 596.

  10. P. Muralt et al., in Materials and Process Integration for MEMS, edited by P.F.E.H. Tay (Kluwer Academic Publishers, The Netherlands, 2002), p. 3.

    Google Scholar 

  11. D.R. Lide (Ed.), Handbook of Chemistry and Physics(CRC Press, 1995).

  12. D.L. DeVoe and A.P. Pisano. Transducers '97, International Conference on Solid-State Sensors and Actuators(Chicago, 1997).

  13. J.H. Kim et al., Integrated Ferroelectrics, 15, 325 (1997).

    Google Scholar 

  14. A.M. Flynn et al., J. Microelectromechanical Sytems, 1, 44 (1992).

    Google Scholar 

  15. M.-A. Dubois and P. Muralt, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(5), 1169 (1998).

    Google Scholar 

  16. G.-A. Racine, P. Muralt, and M.-A. Dubois, Smart Mater. Struct., 7, 404 (1998).

    Google Scholar 

  17. J. Baborowski et al., Ferroelectrics, 224, 283 (1999).

    Google Scholar 

  18. K. Kunz, P. Enoksson, and G. Stemme, Sensors and Actuators A, 92, 156 (2001).

    Google Scholar 

  19. S.S. Lee and R.M. White, J. Micromech. Microeng., 8, 230 (1998).

    Google Scholar 

  20. A. Schroth et al., Sensors and Actuators A, 73, 144 (1999).

    Google Scholar 

  21. C. Lee, T. Itoh, and T. Suga, Sensors and Actuators A, 72, 179 (1999).

    Google Scholar 

  22. J.J. Bernstein et al., IEEE Tran. UFFC, 44(5), 960 (1997).

    Google Scholar 

  23. J. Baborowski, N. Ledermann, and P. Muralt, Proceedings of IEEE Ultrasonic Symposium(Münich, Germany, 2002).

  24. T. Maeder, L. Sagalowicz, and P. Muralt, Jpn. J. Appl. Phys., 37, 2007 (1998).

    Google Scholar 

  25. P. Muralt et al., J. Appl. Phys., 83(7), 3835 (1998).

    Google Scholar 

  26. T. Maeder et al., British Ceram. Proc., 54, 206 (1995).

    Google Scholar 

  27. B. Kloeck et al., IEEE Transactions on Electron Devices, 36(4), 663 (1989).

    Google Scholar 

  28. P. Fluckiger et al., Standard processes at the Center of Microtechnology-EPFL, 2002, http://microtechnique.epfl.ch/ cmi/.

  29. J. Hopwood, Plasma Sources Science and Technology, 1, 109.

  30. J. Baborowski, P. Muralt, and N. Ledermann, Integrated Ferroelectrics, 27, 243 (1999).

    Google Scholar 

  31. J. Baborowski et al., Vacuum, 56, 51 (2000).

    Google Scholar 

  32. M. Sugawara, Plasma Etching Fundamentals and Applications(Oxford Science Publications, 1998).

  33. S. Marks, L.G. Jerde, G. Celii, S.A. Aggarwal, and J.S. Martin, Proceedings of ISAF(Nara, 2002).

  34. http://www.tegal.com/news events/nr/nr020718.html

  35. E. Lee et al., Integrated Ferroelectrics, 16, 165 (1997).

    Google Scholar 

  36. S. Troiler-McKinstry et al. International Symposium of Applied Ferroelectrics(ISAF, Bethlehem, 1986).

    Google Scholar 

  37. H. Macé, H. Achard, and L. Peccoud, Microelectronic Engineering 29, 45 (1995).

    Google Scholar 

  38. R. Zeto et al., Mat. Res. Soc. Symp. Proc., 546, 159 (1999).

    Google Scholar 

  39. W. Pan et al., J. Mater. Res., 9(11), 2976 (1994).

    Google Scholar 

  40. C.W. Chung, J. Vac. Sci. Technol. B, 16(4), 1894 (1998).

    Google Scholar 

  41. J.-K. Jung and W.-J. Lee, Jpn. J. Appl. Phys., 40, 1408 (2001).

    Google Scholar 

  42. Chee Won Chung, Yo Han Byun, and Hye In Kim, Microelectronic Engineering, 63, 353 (2002).

    Google Scholar 

  43. K.Williams et al. IEEE International Symposium on Application of Ferroelectrics (ISAF'96)(1996).

  44. F. Boukari et al., Rev. Sci. Instrum., 65(4), 1097 (1994).

    Google Scholar 

  45. J. Baborowski et al., Integrated Ferroelectrics, 31, 261 (2000).

    Google Scholar 

  46. J.L. Vossen and W. Kern, Thin Film Process, 1st ed. Vol. V-1. (Academic Press, New-York, 1978).

    Google Scholar 

  47. R.P. Frankenthal and D.H. Eaton, J. Electrochem. Soc., 123(5), 703 (1976).

    Google Scholar 

  48. C. Farrell, K. Milkove, C. Wang, and D. Kotecki, Integrated Ferroelectrics, 16, 109 (1997).

    Google Scholar 

  49. K.L. Milkove, J.A. Coffin, and C. Dziobkowski, J. Vac. Sci. Technol. A16(3), 1483 (1998).

    Google Scholar 

  50. Celli et al., Integrated Ferroelectrics, 27, 227 (1999).

    Google Scholar 

  51. T. Sakoda et al., Japanese Journ. Appl. Phys. pI, 40, 2911 (2001).

    Google Scholar 

  52. Chung et al., Integrated Ferroelectrics, 39, 119 (2001).

    Google Scholar 

  53. Chung et al., Journal of Vac. Sc & Technol. A, 19, 2400 (2001).

    Google Scholar 

  54. Chongying Xu et al., Ferroelectric Thin Films VII, MRS, 129 (1999).

  55. M.C. Chianga et al., Electrochemical Society Proceedings, 99, 114 (2000).

    Google Scholar 

  56. Eunk-Jik Lee, Jin-Woong Kim, and Won-Jong Lee, Jpn. J. Appl. Phys., 37, 2634 (1998).

    Google Scholar 

  57. Wei Pan and S.B. Desu, Phys. Stat. Sol., (a) 161, 201 (1997).

    Google Scholar 

  58. F. Lärmer and A. Schilp, Patent US6284148: Method for anisotropic etching of silicon, USA, 2001.

  59. A.M. Hynes et al., Sensors and Actuators A, 74, 13 (1999).

    Google Scholar 

  60. A.A. Yasseen, N.J. Mourlas and M. Mehregany, J. Electrochem. Soc., 144(1), 237 (1997).

    Google Scholar 

  61. X.J. Ladabaum and B.T. Khuri-Yakub, Ultrasonic, 36, 25 (1998).

    Google Scholar 

  62. E. Cianci, V. Foglietti, G. Caliano, and M. Pappalardo, Microelectronic Engineering, 61/62, 1025 (2002).

    Google Scholar 

  63. G. Percin and B.T. Khuri-Yakub, Ultrasonics, 40441 (2002).

    PubMed  Google Scholar 

  64. S. Frédérico, C. Hibert, R. Fritschi, Ph. Flückiger, Ph. Renaud, and A.M. Ionescu, Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '03)(Kyoto, Japan, 2003), p. 570.

  65. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sensors and Actuators A, 105, 162 (2003).

    Google Scholar 

  66. M.-G. Kang, K.-T. Kim, and C.-I. Kim, Thin Solid Films, 398/399, 448 (2001).

    Google Scholar 

  67. M.-G. Kang, K.-T. Kim, and C.-I. Kim, Thin Solid Films, 435, 222 (2003).

    Google Scholar 

  68. S. Bühlmann, B. Dwir, J. Baborowski, and P. Muralt, Applied Physics Letters, 80(17), 3195 (2002).

    Google Scholar 

  69. M. Hiratani, C. Okazaki, H. Hasegawa, N. Sugii, Y. Tarutani, and K. Takagi, Jpn. J. Appl. Phys., Part 1, 36, 5219 (1997).

    Google Scholar 

  70. F. Calame, J. Baborowski, N. Ledermann, P. Muralt, S. Gentil, and N. Setter, Integrated Ferroelectrics, 54, 549 (2003).

    Google Scholar 

  71. A. Pollien, N. Ledermann, J. Baborowski, and P. Muralt, Patent, WO 02/080620, 10.10.2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baborowski, J. Microfabrication of Piezoelectric MEMS. Journal of Electroceramics 12, 33–51 (2004). https://doi.org/10.1023/B:JECR.0000034000.11787.90

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000034000.11787.90

Navigation